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Reading Assignment

▶ This lecture: UC 6.3

▶ Next lecture: UC 6, 7, except 7.6
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Euclidean Algorithm

Input: two integers a ≥ b > 0
1 r0 = a, r1 = b, i = 1
2 Do:
3 i = i + 1
4 ri = ri−2 mod ri−1

5 While ri ̸= 0
Output: gcd(a, b) = ri−1

▶ Example: r0 = 27, r1 = 21, r2 = 6, r3 = 3, r4 = 0
▶ In practice, there is no need to keep each rk – we use them

just for ease of presentation.

▶ For a proof of correctness
▶ ri−1 = gcd(0, ri−1) = gcd(ri , ri−1) = . . . = gcd(rk , rk−1)

= gcd(rk−2 mod rk−1, rk−1) = gcd(rk−2, rk−1) = . . .
= gcd(r1, r0) = gcd(a, b)

▶ r1 > r2 > . . . > ri−1 > ri = 0

▶ Is this algorithm better than the simple one?
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Time Complexity of Euclidean Algorithm

▶ Let qk−1 = ⌊ rk−2

rk−1
⌋. Since rk−2 ≥ rk−1, qk−1 ≥ 1. So,

rk−2 = qk−1rk−1 + rk ≥ rk−1 + rk ≥ 2rk ,∀k = 2, 3, . . . , i .

▶ For i being odd, we have,

a = r0 ≥ 2r2 ≥ 22r4 ≥ · · · ≥ 2
i−1
2 ri−1 ≥ 2

i−1
2 .

▶ Similar for i being even.

▶ The loop iterates O(log a) = O(N) rounds.
▶ Overall the time complexity is O(N3).

▶ GCD can be computed efficiently in polynomial time.
▶ What is the complexity to obtain any divisor of a that is not 1

or a? Or to prove that a is a prime number?
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Extended Euclidean Algorithm (EEA)

Input: two integers a ≥ b > 0
1 r0 = a, r1 = b, s0 = 1, t0 = 0, s1 = 0, t1 = 1, i = 1
2 Do:
3 i = i + 1
4 ri = ri−2 mod ri−1, qi−1 = ⌊ ri−2

ri−1
⌋

5 si = si−2 − qi−1si−1, ti = ti−2 − qi−1ti−1

6 While ri ̸= 0
Output: gcd(a, b) = ri−1, s = si−1, t = ti−1

▶ Same time complexity as Euclidean Algorithm: O(N3)
▶ Same rounds of iterations. Additional calculations do not

increase complexity.

▶ Anything special?
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Extended Euclidean Algorithm (EEA Cont.)

k 0 1 2 3 4
rk 27 21 6 3 0(
1

−qk−1

) (
1
−1

) (
1
−3

) (
1
−2

)
(
sk
tk

)
=

(
sk−2 sk−1

tk−2 tk−1

)(
1

−qk−1

)
1
0

0
1

1
−1

−3
4

7
−9

▶ Starting with
(
r0 r1

)
=

(
a b

)(s0 s1
t0 t1

)
. We have,

(
r1 r2

)
=

(
r0 r1

)(0 1
1 −q1

)
=

(
a b

)(s0 s1
t0 t1

)(
0 1
1 −q1

)
=

(
a b

)(s1 s2
t1 t2

)

▶ So we can prove
(
ri−1 ri

)
=

(
a b

)(si−1 si
ti−1 ti

)
.

▶ In other words, as + bt = asi−1 + bti−1 = ri−1 = gcd(a, b)

8/16 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Solve Modular Algebra Equations

Assume gcd(a,m) = 1. Solve

ax ≡ b (mod m)

▶ Apply EEA to find s and t such that as +mt = 1.

▶ Now we have as ≡ 1 (mod m)

▶ So x ≡ 1 · x ≡ asx ≡ (ax)s ≡ bs (mod m)
▶ Equation solved!

▶ Time complexity is O(N3), dominated by EEA.
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Examples 1

▶ Solve 5x ≡ 1 (mod 192).

k 0 1 2 3 4

rk 192 5(
1

−qk−1

)
(
sk
tk

)
1
0

0
1

▶ 192 · (−2) + 5 · 77 = 1
▶ x ≡ 77 (mod 192)
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Solve System of Modular Algebra Equations

Assume gcd(m1,m2) = 1. Solve

x ≡ a1 (mod m1), x ≡ a2 (mod m2)

▶ A.k.a. Chinese Remainder Theorem.

▶ Apply EEA to find s and t such that m1s +m2t = 1.

▶ Solution: x ≡ a1m2t + a2m1s (mod m1m2)

▶ Check: x ≡ a1m2t ≡ a1(1−m1s) ≡ a1 (mod m1).
x ≡ a2m1s ≡ a2(1−m2t) ≡ a2 (mod m2).

▶ In particular, if a1 = a2 = a, the solution is
x ≡ am2t + am1s ≡ a(m2t +m1s) ≡ a (mod m1m2)

▶ Time complexity is O(N3), dominated by EEA.
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Examples 2

▶ Solve x ≡ 6 (mod 13), x ≡ 11 (mod 17)

k 0 1 2 3 4

rk 17 13(
1

−qk−1

)
(
sk
tk

)
1
0

0
1

▶ 17 · (−3) + 13 · 4 = 1
▶ x ≡ 11 · 13 · 4 + 6 · 17 · (−3) ≡ 266 ≡ 45 (mod 221)
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Modular n-th Root

▶ What about modular n-th root?

xn ≡ a (mod m).

▶ Obviously you can solve it via brute-force in O(2N) time for a
N-bit m. However, this is not what we are interested into.

▶ Consider the case when m = p is a prime number first.
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Fermat’s Little Theorem

▶ Consider an integer x that is not a multiple of p.
▶ What does the sequence kx mod p look like for

k = 1, 2, . . . , p − 1?
▶ A permutation of 1, 2, . . . , p − 1 since

▶ These p − 1 remainders are all within 1, 2, . . . , p − 1.
▶ They are all different since p is prime.

▶ So x · (2x) · · · ((p − 1)x) ≡ 1 · 2 · · · (p − 1) (mod p).

▶ In other words, (p − 1)!xp−1 ≡ (p − 1)! (mod p).
▶ So xp−1 ≡ 1 (mod p) since gcd((p − 1)!, p) = 1.

▶ Fermat’s Little Theorem: xp ≡ x (mod p)
▶ Also include the case x ≡ 0 (mod p).

▶ Example: 213 ≡ 2 (mod 13), 313 ≡ 3 (mod 13).
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Summary

▶ EEA is essential for solving modular algebra equations.
▶ In particular, if gcd(a, b) = 1, we can apply EEA to find

integers s and t such that as + bt = 1.

▶ EEA is efficient with a time complexity of O(N3) for N-bit
inputs.
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