ECE 443/518 – Computer Cyber Security Lecture 08 Euclidean Algorithm, Fermat's Little Theorem

Professor Jia Wang Department of Electrical and Computer Engineering Illinois Institute of Technology

September 10, 2025

Outline

Euclidean Algorithm

Reading Assignment

► This lecture: UC 6.3

Next lecture: UC 6, 7, except 7.6

Outline

Euclidean Algorithm

Euclidean Algorithm

```
two integers a > b > 0
  Input:
      1 r_0 = a, r_1 = b, i = 1
      2 Do:
      3 i = i + 1
      4 r_i = r_{i-2} \mod r_{i-1}
      5 While r_i \neq 0
Output: gcd(a, b) = r_{i-1}
```

- Example: $r_0 = 27$, $r_1 = 21$, $r_2 = 6$, $r_3 = 3$, $r_4 = 0$
 - In practice, there is no need to keep each r_k we use them just for ease of presentation.
- For a proof of correctness

$$r_{i-1} = \gcd(0, r_{i-1}) = \gcd(r_i, r_{i-1}) = \dots = \gcd(r_k, r_{k-1})$$

$$= \gcd(r_{k-2} \bmod r_{k-1}, r_{k-1}) = \gcd(r_{k-2}, r_{k-1}) = \dots$$

$$= \gcd(r_1, r_0) = \gcd(a, b)$$

- $r_1 > r_2 > \ldots > r_{i-1} > r_i = 0$
- Is this algorithm better than the simple one?

Time Complexity of Euclidean Algorithm

▶ Let $q_{k-1} = \lfloor \frac{r_{k-2}}{r_{k-1}} \rfloor$. Since $r_{k-2} \ge r_{k-1}$, $q_{k-1} \ge 1$. So, $r_{k-2} = q_{k-1}r_{k-1} + r_k \ge r_{k-1} + r_k \ge 2r_k, \forall k = 2, 3, \dots, i.$

► For *i* being odd, we have,

$$a = r_0 \ge 2r_2 \ge 2^2 r_4 \ge \dots \ge 2^{\frac{i-1}{2}} r_{i-1} \ge 2^{\frac{i-1}{2}}.$$

- ► Similar for *i* being even.
- ▶ The loop iterates $O(\log a) = O(N)$ rounds.
 - ▶ Overall the time complexity is $O(N^3)$.
- GCD can be computed efficiently in polynomial time.
 - ▶ What is the complexity to obtain any divisor of *a* that is not 1 or *a*? Or to prove that *a* is a prime number?

Extended Euclidean Algorithm (EEA)

```
Input: two integers a \ge b > 0

1 r_0 = a, r_1 = b, s_0 = 1, t_0 = 0, s_1 = 0, t_1 = 1, i = 1

2 Do:

3 i = i + 1

4 r_i = r_{i-2} \mod r_{i-1}, q_{i-1} = \lfloor \frac{r_{i-2}}{r_{i-1}} \rfloor

5 s_i = s_{i-2} - q_{i-1}s_{i-1}, t_i = t_{i-2} - q_{i-1}t_{i-1}

6 While r_i \ne 0

Output: gcd(a, b) = r_{i-1}, s = s_{i-1}, t = t_{i-1}
```

- ► Same time complexity as Euclidean Algorithm: $O(N^3)$
 - Same rounds of iterations. Additional calculations do not increase complexity.
- Anything special?

Extended Euclidean Algorithm (EEA Cont.)

▶ Starting with $\begin{pmatrix} r_0 & r_1 \end{pmatrix} = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} s_0 & s_1 \\ t_0 & t_1 \end{pmatrix}$. We have,

$$(r_1 \quad r_2) = (r_0 \quad r_1) \begin{pmatrix} 0 & 1 \\ 1 & -q_1 \end{pmatrix} = (a \quad b) \begin{pmatrix} s_0 & s_1 \\ t_0 & t_1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -q_1 \end{pmatrix}$$

$$= (a \quad b) \begin{pmatrix} s_1 & s_2 \\ t_1 & t_2 \end{pmatrix}$$

- So we can prove $(r_{i-1} \quad r_i) = (a \quad b) \begin{pmatrix} s_{i-1} & s_i \\ t_{i-1} & t_i \end{pmatrix}$.
- ▶ In other words, $as + bt = as_{i-1} + bt_{i-1} = r_{i-1} = gcd(a, b)$

Solve Modular Algebra Equations

Assume
$$gcd(a, m) = 1$$
. Solve

$$ax \equiv b \pmod{m}$$

- ▶ Apply EEA to find s and t such that as + mt = 1.
- Now we have $as \equiv 1 \pmod{m}$
- So $x \equiv 1 \cdot x \equiv asx \equiv (ax)s \equiv bs \pmod{m}$
- Equation solved!
 - ▶ Time complexity is $O(N^3)$, dominated by EEA.

Examples 1

► Solve $5x \equiv 1 \pmod{192}$.

k	0	1	2	3	4
r_k	192	5			
$oxed{\begin{pmatrix} 1 \\ -q_{k-1} \end{pmatrix}}$					
(s_k)	1	0			
(t_k)	0	1			

- ▶ $192 \cdot (-2) + 5 \cdot 77 = 1$

Solve System of Modular Algebra Equations

Assume $gcd(m_1, m_2) = 1$. Solve

$$x \equiv a_1 \pmod{m_1}, \quad x \equiv a_2 \pmod{m_2}$$

- A.k.a. Chinese Remainder Theorem.
- ▶ Apply EEA to find s and t such that $m_1s + m_2t = 1$.
- Solution: $x \equiv a_1 m_2 t + a_2 m_1 s \pmod{m_1 m_2}$
- ► Check: $x \equiv a_1 m_2 t \equiv a_1 (1 m_1 s) \equiv a_1 \pmod{m_1}$. $x \equiv a_2 m_1 s \equiv a_2 (1 - m_2 t) \equiv a_2 \pmod{m_2}$.
- In particular, if $a_1 = a_2 = a$, the solution is $x \equiv am_2t + am_1s \equiv a(m_2t + m_1s) \equiv a \pmod{m_1m_2}$
- ▶ Time complexity is $O(N^3)$, dominated by EEA.

Examples 2

Solve $x \equiv 6 \pmod{13}$, $x \equiv 11 \pmod{17}$

k	0	1	2	3	4
r_k	17	13			
$oxed{ \begin{pmatrix} 1 \ -q_{k-1} \end{pmatrix} }$					
(s_k)	1	0			
(t_k)	0	1			

- $ightharpoonup 17 \cdot (-3) + 13 \cdot 4 = 1$
- $x \equiv 11 \cdot 13 \cdot 4 + 6 \cdot 17 \cdot (-3) \equiv 266 \equiv 45 \pmod{221}$

Outline

Euclidean Algorithm

Modular n-th Root

▶ What about modular *n*-th root?

$$x^n \equiv a \pmod{m}$$
.

- Obviously you can solve it via brute-force in $O(2^N)$ time for a N-bit m. However, this is not what we are interested into.
- ▶ Consider the case when m = p is a prime number first.

- Consider an integer x that is not a multiple of p.
- What does the sequence $kx \mod p$ look like for $k = 1, 2, \dots, p 1$?
 - ▶ A permutation of 1, 2, ..., p-1 since
 - ▶ These p-1 remainders are all within 1, 2, ..., p-1.
 - ► They are all different since *p* is prime.
 - So $x \cdot (2x) \cdots ((p-1)x) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}$.
- ▶ In other words, $(p-1)!x^{p-1} \equiv (p-1)! \pmod{p}$.
 - So $x^{p-1} \equiv 1 \pmod{p}$ since gcd((p-1)!, p) = 1.
- Fermat's Little Theorem: $x^p \equiv x \pmod{p}$
 - Also include the case $x \equiv 0 \pmod{p}$.
- Example: $2^{13} \equiv 2 \pmod{13}$, $3^{13} \equiv 3 \pmod{13}$.

Summary

- ▶ EEA is essential for solving modular algebra equations.
 - ▶ In particular, if gcd(a, b) = 1, we can apply EEA to find integers s and t such that as + bt = 1.
- ▶ EEA is efficient with a time complexity of $O(N^3)$ for N-bit inputs.