1/24

ECE 443/518 — Computer Cyber Security
Lecture 09 The RSA Cryptosystem

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

September 15, 2025

ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Outline

Modular n-th Root

Public-Key Cryptography

RSA

2/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Reading Assignment

» This lecture: UC 6,7, except 7.6
> Next lecture: UC 8.1,8.5,13.3.1

3/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Outline

Modular n-th Root

4/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Solve Modular n-th Root for Prime p

> Solve x> =2 (mod 13).
> x19=14 (mod 13), x}*> =8 (mod 13), x*® =6 (mod 13).
> Fermat’s Little Theorem: x* = x (mod 13)
> So x® = xBx!? = xx!? = x (mod 13).
» Solution: x =6 (mod 13)
» How about x" = a (mod p)?
» Assume ged(n,p—1) = 1.
»> No, you can't use this method if n = 2.
» Solve ny =1 (mod p — 1) for y (via EEA).
» Solution: x = & (mod p), or practically x = a¥ mod p.
> Check: x" = a" = al™) mod (P=1) = 3 (mod p).
» Time complexity
> EEA takes O(N3) time.
> 2’ mod p can be completed in O(N3) time. (How?)
> Overall O(N3) time again!

5/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Example

» Solve x°> =10 (mod 17).
» Apply EEA to solve 5y =1 (mod 16)
> y =13 (mod 16)
> x =101 (mod 17)
» Can we use a calculator to compute 103 mod 177

6/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Square-and-Multiply

VY

\4

7/24

Compute 103 mod 17
1013 =108 - 10* - 10! (mod 17)
> Since 13 = (1101),
Use square to calculate 102 mod 7, 10* mod 7, etc.
> 10?2 =100 = 15 (mod 17)
> 10* =225 =4 (mod 17)
> 108 =16 (mod 17)
Sox=101%=16-4-10=11 (mod 17)
Indeed, this algorithm computes ¥ mod p in O(N3) time.
» O(N) modular multiplications.

ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Square-and-Multiply by Hand

10%2 .10

100° - 10 = 15% - 10
2253.10=4%-10
42.40=142%-6
16-6=96=11 (mod 17)

1013

» Be creative with your calculators!

8/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Modular n-th Root where m is not Prime

x"=a (mod m).

» What if m is not a prime number?

» Consider m = pq where p # g are both prime numbers.
> Idea

» Solve the equation for p and q individually.
» Then combine the results.

9/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Solve Modular n-th Root

x"=a (mod m), where m = pgq.

» By Fermat's Little Theorem,
» For ny =1 (mod p — 1), (&¥)" = a (mod p).
» For ny’ =1 (mod g — 1), (8¥ )"=a (mod q).
» By Chinese Remainder Theorem,
> If we can choose y = y’, then (a¥)" = a (mod pq).
» This is possible if gcd(n, (p—1)(g — 1)) = 1.
» Solve ny =1 (mod (p — 1)(g — 1)) to obtain y.
» We can solve x" = a (mod pq) if ged(n,(p—1)(g—1)) = 1.
» Solution: x = & (mod m), or practically x = @ mod m.
> Time complexity: O(N3)
» Note that you cannot use this method to solve the seemingly
very simple case of x> = a (mod pq).

10/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Example

> Solve x> =197 (mod 221).
> 221 =13« 17
» Apply EEA to solve 5y =1 (mod 192)
> y =77 (mod 192)
» To compute x = 19777 (mod 221) directly,
> x =197-19776 =197 - 1343 = 197 - 55%°
=197-55-5518 =6.1522=6-152 - 1528
=28-120* = 28 - 352 = 45 (mod 221)
» Computer programs could use Chinese Remainder Theorem to
compute x fast in practice.
> x=197""=2""=25=6 (mod 13)
> x=197"7 = 107" = 103 = 11 (mod 17)
> x =45 (mod 221)

11/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



An Observation

x"=a (mod m).

» But what if you don't know p and g for m = pq?

» Factor m into pq first, or
» Brute force: try x=1,2,...,m—1

» What are their time complexities?
» Any better algorithms?

> Is this observation of any practical importance?

12/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Outline

Public-Key Cryptography

13/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Symmetric Cryptography Revisited

Alice Bob

x ¥ x
e e

! T

k k

Fig. 6.1 Principle of symmetric-key encryption

14/24

(Paar and Pelzl)
With the use of MAC as needed.
Issue with Key Distribution: to establish a secret channel
using symmetric cryptography, Alice and Bob need a secret
channel to share the secret key k.

Issue with Number of Keys: for a group of n people to
communicate securely among each two of them, each people

need to manage n keys and a total of w keys are needed.

Issue with Nonrepudiation: Alice cannot prove to a third party
that a ciphertext (with MAC) was sent by Bob as she also
know the secret key k to generate the ciphertext.

ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Public-Key Cryptography
Alice Hob
Fpur (kput-kpr) = k

y= ekp.w (lj

x=dg, (¥)

Fig. 6.4 Basic protocol for public-key encryption
» Key pair k: a public ky,, and a private (secret) k,(,,P.aar and PelzI)
» No one should be able to derive k,, from kpup.
» Key Distribution: to establish a secret channel, Alice only
need to obtain Bob's k,,; via an authentic channel.
» Number of Keys: each people just need to manage 1 key no
matter how many people are there in the group.
» Nonrepudiation: via digital signatures if roles of k, and kp,p
can be exchanged.
» Only if we could find such a cipher ...
» For computationally unbounded adversaries?
» For computationally bounded adversaries?
15/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IT



A Simple Hybrid Protocol

Alice Bob
k
-pub
Kpub,Kpr

choose random K

}I = ekpyﬁ; (k)

¥
k= di, (y)

encrypt message x:

2=AESi(x)

x=AES; ()

Fig. 6.5 Basic key transport protocol with AES as an example of a symmetric cipher

(Paar and Pelzl)
» In practice, symmetric ciphers remain very useful as public-key
ciphers are usually orders of magnitude slower.
» Use public-key ciphers to create a “slower” secure channel
from an authentic channel between Alice and Bob.
» Then Alice and Bob can use this “slower” secure channel to
establish the secret key for symmetric ciphers, and thus create
a “faster” secure channel.

16/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Outline

RSA

17/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



History of RSA

» 1977: created by Ronald Rivest, Adi Shamir and Leonard
Adleman

> 1983: RSA patent granted in US

» 1997: Clifford Cocks’ equivalent system when working in the
British intelligence agency GCHQ in 1973 was declassified.

» 2000: RSA patent expired in US

18/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



RSA Key Generation

» Choose two prime numbers p and q.

v

Compute n = pgq.

» Choose a positive integer e such that
ged(e,(p—1)(g—1)) = 1.

> Solve de =1 (mod (p — 1)(g — 1)) for a positive integer d.

v

Public key: kpup = (n, €)
» Private key: kpr = (p, q,d)

19/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



RSA Encryption

» Public key: kpup = (n, €)

» Plaintext: x € {0,1,...,n—1}.

> Encryption: y = e, (x) = x° mod n.
» Ciphertext: y € {0,1,...,n—1}.

» Example: kpyp = (n=221,e = 5)
> x =45, y = 455 mod 221 = 197.

20/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



RSA Decryption

v

21/24

Private key: k,r = (p, q,d)

Decryption: x = d, (y) = y9 mod pg.

Example: kpr = (p=13,9 =17,d =77)
> y =197, x = 19777 mod 221 = 45.

Use a public key from Bob, Alice can only encrypt the
message but cannot decrypt the message.

» Why? What are our assumptions?

ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Oscar's Attacks

» Oscar knows ky,, = (n, €) and the ciphertext y.
» Assume n to be N bits.

> Apply brute force to find x
> Need O(2") time.

» Factor ninto p and g

» Apply integer factorization.
» |If p and g are chosen to be around %—bit, then this will take

Oscar O(27) time.
» Both are not practical for large N.
> At least N = 2048 to be secure in long term.

22/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Padding

» Oscar may derive useful statistics about plaintext from
ciphertext since RSA is deterministic.

» Oscar may recover small x if e is small by trying to compute
/¥, </y + n, etc. using usual (non-modular) math.

» Oscar may modify y to change the plaintext in predictable
ways: for any chosen s, if y' = sy, then x' = di, (') = sx.

» Use padding to introduce random structure into plaintext.

» E.g. Optimal Asymmetric Encryption Padding (OAEP) in
Public Key Cryptography Standard #1 (PKCS #1).

> A lot of other considerations for both security and
performance.

23/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Summary

> RSA
> Key generation: by Bob, kuu = (n,€), ko = (p, g, d)
> Encryption: everyone, y = e, (x) = x¢ mod n.
» Decryption: Bob only, x = di, (y) = y9 mod pg.
» Assumption: Oscar cannot factorize n into p and g in
polynomial time.
» Similar to other cryptosystems, there are a lot of pitfalls for
actual implementaion — you should follow documented
standards exactly or use an established library instead.

24/24 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



	Modular n-th Root
	Public-Key Cryptography
	RSA

