ECE 443/518 – Computer Cyber Security Lecture 09 The RSA Cryptosystem

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

September 15, 2025

Outline

Modular n-th Root

Public-Key Cryptography

RSA

Reading Assignment

- ► This lecture: UC 6,7, except 7.6
- ► Next lecture: UC 8.1,8.5,13.3.1

Outline

Modular n-th Root

Public-Key Cryptography

RSA

Solve Modular *n*-th Root for Prime *p*

- Solve $x^5 \equiv 2 \pmod{13}$.
 - $x^{10} \equiv 4 \pmod{13}$, $x^{15} \equiv 8 \pmod{13}$, $x^{25} \equiv 6 \pmod{13}$.
 - Fermat's Little Theorem: $x^{13} \equiv x \pmod{13}$
 - So $x^{25} \equiv x^{13}x^{12} \equiv xx^{12} \equiv x \pmod{13}$.
 - ▶ Solution: $x \equiv 6 \pmod{13}$
- ▶ How about $x^n \equiv a \pmod{p}$?
 - Assume gcd(n, p-1) = 1.
 - No, you can't use this method if n = 2.
 - ▶ Solve $ny \equiv 1 \pmod{p-1}$ for $y \pmod{EEA}$.
 - Solution: $x \equiv a^y \pmod{p}$, or practically $x = a^y \pmod{p}$.
 - ► Check: $x^n \equiv a^{ny} \equiv a^{(ny) \mod (p-1)} \equiv a \pmod{p}$.
- Time complexity
 - ▶ EEA takes $O(N^3)$ time.
 - $ightharpoonup a^y \mod p$ can be completed in $O(N^3)$ time. (How?)
 - ▶ Overall $O(N^3)$ time again!

Example

- ► Solve $x^5 \equiv 10 \pmod{17}$.
- Apply EEA to solve $5y \equiv 1 \pmod{16}$
 - $y \equiv 13 \pmod{16}$
- $x \equiv 10^{13} \pmod{17}$
 - ightharpoonup Can we use a calculator to compute 10^{13} mod 17?

Square-and-Multiply

- ► Compute 10¹³ mod 17
- $ightharpoonup 10^{13} \equiv 10^8 \cdot 10^4 \cdot 10^1 \pmod{17}$
 - ightharpoonup Since $13 = (1101)_2$
- ▶ Use square to calculate 10² mod 7, 10⁴ mod 7, etc.
 - $ightharpoonup 10^2 \equiv 100 \equiv 15 \pmod{17}$
 - ► $10^4 \equiv 225 \equiv 4 \pmod{17}$
 - $ightharpoonup 10^8 \equiv 16 \pmod{17}$
- So $x \equiv 10^{13} \equiv 16 \cdot 4 \cdot 10 \equiv 11 \pmod{17}$
- ▶ Indeed, this algorithm computes $a^y \mod p$ in $O(N^3)$ time.
 - O(N) modular multiplications.

Square-and-Multiply by Hand

$$10^{13} \equiv 10^{12} \cdot 10$$

$$\equiv 100^{6} \cdot 10 \equiv 15^{6} \cdot 10$$

$$\equiv 225^{3} \cdot 10 \equiv 4^{3} \cdot 10$$

$$\equiv 4^{2} \cdot 40 \equiv 4^{2} \cdot 6$$

$$\equiv 16 \cdot 6 \equiv 96 \equiv 11 \pmod{17}$$

Be creative with your calculators!

Modular *n*-th Root where *m* is not Prime

$$x^n \equiv a \pmod{m}$$
.

- ▶ What if *m* is not a prime number?
- ▶ Consider m = pq where $p \neq q$ are both prime numbers.
- ► Idea
 - Solve the equation for p and q individually.
 - Then combine the results.

Solve Modular *n*-th Root

$$x^n \equiv a \pmod{m}$$
, where $m = pq$.

- By Fermat's Little Theorem,
 - For $ny \equiv 1 \pmod{p-1}$, $(a^y)^n \equiv a \pmod{p}$.
 - For $ny' \equiv 1 \pmod{q-1}$, $(a^{y'})^n \equiv a \pmod{q}$.
- By Chinese Remainder Theorem,
 - If we can choose y = y', then $(a^y)^n \equiv a \pmod{pq}$.
 - ▶ This is possible if gcd(n, (p-1)(q-1)) = 1.
 - Solve $ny \equiv 1 \pmod{(p-1)(q-1)}$ to obtain y.
- We can solve $x^n \equiv a \pmod{pq}$ if gcd(n, (p-1)(q-1)) = 1.
 - Solution: $x \equiv a^y \pmod{m}$, or practically $x = a^y \pmod{m}$.
 - ▶ Time complexity: $O(N^3)$
- Note that you cannot use this method to solve the seemingly very simple case of $x^2 \equiv a \pmod{pq}$.

Example

- ► Solve $x^5 \equiv 197 \pmod{221}$.
 - **▶** 221 = 13 * 17
- ▶ Apply EEA to solve $5y \equiv 1 \pmod{192}$
 - $y \equiv 77 \pmod{192}$
- ▶ To compute $x \equiv 197^{77} \pmod{221}$ directly,
- ► Computer programs could use Chinese Remainder Theorem to compute *x* fast in practice.
 - $x \equiv 197^{77} \equiv 2^{77} \equiv 2^5 \equiv 6 \pmod{13}$
 - $x \equiv 197^{77} \equiv 10^{77} \equiv 10^{13} \equiv 11 \pmod{17}$
 - $x \equiv 45 \pmod{221}$

An Observation

$$x^n \equiv a \pmod{m}$$
.

- ▶ But what if you don't know p and q for m = pq?
 - Factor *m* into *pq* first, or
 - ▶ Brute force: try x = 1, 2, ..., m 1
- ▶ What are their time complexities?
 - Any better algorithms?
- Is this observation of any practical importance?

Outline

Modular n-th Root

Public-Key Cryptography

RSA

Symmetric Cryptography Revisited

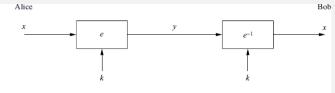


Fig. 6.1 Principle of symmetric-key encryption

(Paar and Pelzl)

- With the use of MAC as needed.
- ▶ Issue with Key Distribution: to establish a secret channel using symmetric cryptography, Alice and Bob need a secret channel to share the secret key *k*.
- lssue with Number of Keys: for a group of n people to communicate securely among each two of them, each people need to manage n keys and a total of $\frac{n(n-1)}{2}$ keys are needed.
- ▶ Issue with Nonrepudiation: Alice cannot prove to a third party that a ciphertext (with MAC) was sent by Bob as she also know the secret key *k* to generate the ciphertext.

Public-Key Cryptography

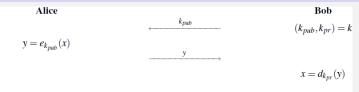


Fig. 6.4 Basic protocol for public-key encryption

- Key pair k: a public k_{pub} and a private (secret) $k_{pr}^{\text{(Paar and Pelzl)}}$
 - ▶ No one should be able to derive k_{pr} from k_{pub} .
- New Distribution: to establish a secret channel, Alice only need to obtain Bob's k_{pub} via an authentic channel.
- Number of Keys: each people just need to manage 1 key no matter how many people are there in the group.
- Nonrepudiation: via digital signatures if roles of k_{pr} and k_{pub} can be exchanged.
- ▶ Only if we could find such a cipher ...
 - For computationally unbounded adversaries?
 - For computationally bounded adversaries?

A Simple Hybrid Protocol

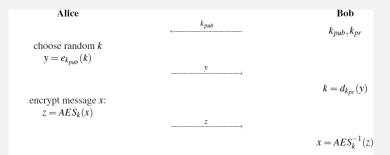


Fig. 6.5 Basic key transport protocol with AES as an example of a symmetric cipher

- (Paar and Pelzl)

 In practice, symmetric ciphers remain very useful as public-key
 - ciphers are usually orders of magnitude slower.

 Use public-key ciphers to create a "slower" secure channel
 - from an authentic channel between Alice and Bob.
 - ► Then Alice and Bob can use this "slower" secure channel to establish the secret key for symmetric ciphers, and thus create a "faster" secure channel.

Outline

Modular n-th Root

Public-Key Cryptography

RSA

History of RSA

- ▶ 1977: created by Ronald Rivest, Adi Shamir and Leonard Adleman
- ▶ 1983: RSA patent granted in US
- ▶ 1997: Clifford Cocks' equivalent system when working in the British intelligence agency GCHQ in 1973 was declassified.
- ▶ 2000: RSA patent expired in US

RSA Key Generation

- Choose two prime numbers p and q.
- ightharpoonup Compute n = pq.
- Choose a positive integer e such that gcd(e, (p-1)(q-1)) = 1.
- ▶ Solve $de \equiv 1 \pmod{(p-1)(q-1)}$ for a positive integer d.
- Public key: $k_{pub} = (n, e)$
- Private key: $k_{pr} = (p, q, d)$

RSA Encryption

- Public key: $k_{pub} = (n, e)$
- ▶ Plaintext: $x \in \{0, 1, ..., n-1\}$.
- ▶ Encryption: $y = e_{k_{pub}}(x) = x^e \mod n$.
 - ► Ciphertext: $y \in \{0, 1, ..., n-1\}$.
- Example: $k_{pub} = (n = 221, e = 5)$
 - x = 45, $y = 45^5 \mod 221 = 197$.

RSA Decryption

- Private key: $k_{pr} = (p, q, d)$
- ▶ Decryption: $x = d_{k_{pr}}(y) = y^d \mod pq$.
- Example: $k_{pr} = (p = 13, q = 17, d = 77)$
 - y = 197, $x = 197^{77} \mod 221 = 45$.
- Use a public key from Bob, Alice can only encrypt the message but cannot decrypt the message.
 - Why? What are our assumptions?

Oscar's Attacks

- Oscar knows $k_{pub} = (n, e)$ and the ciphertext y.
 - Assume *n* to be *N* bits.
- Apply brute force to find x
 - Need $O(2^N)$ time.
- Factor *n* into *p* and *q*
 - Apply integer factorization.
 - If p and q are chosen to be around $\frac{N}{2}$ -bit, then this will take Oscar $O(2^{\frac{N}{2}})$ time.
- ▶ Both are not practical for large N.
 - At least N = 2048 to be secure in long term.

Padding

- Oscar may derive useful statistics about plaintext from ciphertext since RSA is deterministic.
- Oscar may recover small x if e is small by trying to compute $\sqrt[e]{y}$, $\sqrt[e]{y+n}$, etc. using usual (non-modular) math.
- Oscar may modify y to change the plaintext in predictable ways: for any chosen s, if $y' = s^e y$, then $x' = d_{k_{or}}(y') = sx$.
- Use padding to introduce random structure into plaintext.
- ► E.g. Optimal Asymmetric Encryption Padding (OAEP) in Public Key Cryptography Standard #1 (PKCS #1).
- ► A lot of other considerations for both security and performance.

Summary

- RSA
 - Key generation: by Bob, $k_{pub} = (n, e)$, $k_{pr} = (p, q, d)$
 - ▶ Encryption: everyone, $y = e_{k_{pub}}(x) = x^e \mod n$.
 - ▶ Decryption: Bob only, $x = d_{k_{pr}}(y) = y^d \mod pq$.
 - Assumption: Oscar cannot factorize *n* into *p* and *q* in polynomial time.
- Similar to other cryptosystems, there are a lot of pitfalls for actual implementaion – you should follow documented standards exactly or use an established library instead.