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Reading Assignment

▶ This lecture: UC 6,7, except 7.6

▶ Next lecture: UC 8.1,8.5,13.3.1
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Solve Modular n-th Root for Prime p

▶ Solve x5 ≡ 2 (mod 13).
▶ x10 ≡ 4 (mod 13), x15 ≡ 8 (mod 13), x25 ≡ 6 (mod 13).
▶ Fermat’s Little Theorem: x13 ≡ x (mod 13)

▶ So x25 ≡ x13x12 ≡ xx12 ≡ x (mod 13).

▶ Solution: x ≡ 6 (mod 13)

▶ How about xn ≡ a (mod p)?
▶ Assume gcd(n, p − 1) = 1.

▶ No, you can’t use this method if n = 2.

▶ Solve ny ≡ 1 (mod p − 1) for y (via EEA).
▶ Solution: x ≡ ay (mod p), or practically x = ay mod p.
▶ Check: xn ≡ any ≡ a(ny) mod (p−1) ≡ a (mod p).

▶ Time complexity
▶ EEA takes O(N3) time.
▶ ay mod p can be completed in O(N3) time. (How?)
▶ Overall O(N3) time again!
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Example

▶ Solve x5 ≡ 10 (mod 17).
▶ Apply EEA to solve 5y ≡ 1 (mod 16)

▶ y ≡ 13 (mod 16)

▶ x ≡ 1013 (mod 17)
▶ Can we use a calculator to compute 1013 mod 17?
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Square-and-Multiply

▶ Compute 1013 mod 17
▶ 1013 ≡ 108 · 104 · 101 (mod 17)

▶ Since 13 = (1101)2
▶ Use square to calculate 102 mod 7, 104 mod 7, etc.

▶ 102 ≡ 100 ≡ 15 (mod 17)
▶ 104 ≡ 225 ≡ 4 (mod 17)
▶ 108 ≡ 16 (mod 17)

▶ So x ≡ 1013 ≡ 16 · 4 · 10 ≡ 11 (mod 17)
▶ Indeed, this algorithm computes ay mod p in O(N3) time.

▶ O(N) modular multiplications.
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Square-and-Multiply by Hand

1013 ≡ 1012 · 10
≡ 1006 · 10 ≡ 156 · 10
≡ 2253 · 10 ≡ 43 · 10
≡ 42 · 40 ≡ 42 · 6
≡ 16 · 6 ≡ 96 ≡ 11 (mod 17)

▶ Be creative with your calculators!
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Modular n-th Root where m is not Prime

xn ≡ a (mod m).

▶ What if m is not a prime number?

▶ Consider m = pq where p ̸= q are both prime numbers.
▶ Idea

▶ Solve the equation for p and q individually.
▶ Then combine the results.
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Solve Modular n-th Root

xn ≡ a (mod m), where m = pq.

▶ By Fermat’s Little Theorem,
▶ For ny ≡ 1 (mod p − 1), (ay )n ≡ a (mod p).
▶ For ny ′ ≡ 1 (mod q − 1), (ay

′
)n ≡ a (mod q).

▶ By Chinese Remainder Theorem,
▶ If we can choose y = y ′, then (ay )n ≡ a (mod pq).
▶ This is possible if gcd(n, (p − 1)(q − 1)) = 1.
▶ Solve ny ≡ 1 (mod (p − 1)(q − 1)) to obtain y .

▶ We can solve xn ≡ a (mod pq) if gcd(n, (p− 1)(q− 1)) = 1.
▶ Solution: x ≡ ay (mod m), or practically x = ay mod m.
▶ Time complexity: O(N3)

▶ Note that you cannot use this method to solve the seemingly
very simple case of x2 ≡ a (mod pq).
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Example

▶ Solve x5 ≡ 197 (mod 221).
▶ 221 = 13 ∗ 17

▶ Apply EEA to solve 5y ≡ 1 (mod 192)
▶ y ≡ 77 (mod 192)

▶ To compute x ≡ 19777 (mod 221) directly,
▶ x ≡ 197 · 19776 ≡ 197 · 13438 ≡ 197 · 5519

≡ 197 · 55 · 5518 ≡ 6 · 1529 ≡ 6 · 152 · 1528
≡ 28 · 1204 ≡ 28 · 352 ≡ 45 (mod 221)

▶ Computer programs could use Chinese Remainder Theorem to
compute x fast in practice.
▶ x ≡ 19777 ≡ 277 ≡ 25 ≡ 6 (mod 13)
▶ x ≡ 19777 ≡ 1077 ≡ 1013 ≡ 11 (mod 17)
▶ x ≡ 45 (mod 221)
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An Observation

xn ≡ a (mod m).

▶ But what if you don’t know p and q for m = pq?
▶ Factor m into pq first, or
▶ Brute force: try x = 1, 2, . . . ,m − 1

▶ What are their time complexities?
▶ Any better algorithms?

▶ Is this observation of any practical importance?
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Symmetric Cryptography Revisited

(Paar and Pelzl)

▶ With the use of MAC as needed.

▶ Issue with Key Distribution: to establish a secret channel
using symmetric cryptography, Alice and Bob need a secret
channel to share the secret key k .

▶ Issue with Number of Keys: for a group of n people to
communicate securely among each two of them, each people
need to manage n keys and a total of n(n−1)

2 keys are needed.

▶ Issue with Nonrepudiation: Alice cannot prove to a third party
that a ciphertext (with MAC) was sent by Bob as she also
know the secret key k to generate the ciphertext.
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Public-Key Cryptography

(Paar and Pelzl)▶ Key pair k : a public kpub and a private (secret) kpr .
▶ No one should be able to derive kpr from kpub.

▶ Key Distribution: to establish a secret channel, Alice only
need to obtain Bob’s kpub via an authentic channel.

▶ Number of Keys: each people just need to manage 1 key no
matter how many people are there in the group.

▶ Nonrepudiation: via digital signatures if roles of kpr and kpub
can be exchanged.

▶ Only if we could find such a cipher ...
▶ For computationally unbounded adversaries?
▶ For computationally bounded adversaries?
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A Simple Hybrid Protocol

(Paar and Pelzl)
▶ In practice, symmetric ciphers remain very useful as public-key

ciphers are usually orders of magnitude slower.
▶ Use public-key ciphers to create a “slower” secure channel

from an authentic channel between Alice and Bob.
▶ Then Alice and Bob can use this “slower” secure channel to

establish the secret key for symmetric ciphers, and thus create
a “faster” secure channel.
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History of RSA

▶ 1977: created by Ronald Rivest, Adi Shamir and Leonard
Adleman

▶ 1983: RSA patent granted in US

▶ 1997: Clifford Cocks’ equivalent system when working in the
British intelligence agency GCHQ in 1973 was declassified.

▶ 2000: RSA patent expired in US
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RSA Key Generation

▶ Choose two prime numbers p and q.

▶ Compute n = pq.

▶ Choose a positive integer e such that
gcd(e, (p − 1)(q − 1)) = 1.

▶ Solve de ≡ 1 (mod (p − 1)(q − 1)) for a positive integer d .

▶ Public key: kpub = (n, e)

▶ Private key: kpr = (p, q, d)
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RSA Encryption

▶ Public key: kpub = (n, e)

▶ Plaintext: x ∈ {0, 1, . . . , n − 1}.
▶ Encryption: y = ekpub(x) = xe mod n.

▶ Ciphertext: y ∈ {0, 1, . . . , n − 1}.
▶ Example: kpub = (n = 221, e = 5)

▶ x = 45, y = 455 mod 221 = 197.
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RSA Decryption

▶ Private key: kpr = (p, q, d)

▶ Decryption: x = dkpr (y) = yd mod pq.

▶ Example: kpr = (p = 13, q = 17, d = 77)
▶ y = 197, x = 19777 mod 221 = 45.

▶ Use a public key from Bob, Alice can only encrypt the
message but cannot decrypt the message.
▶ Why? What are our assumptions?
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Oscar’s Attacks

▶ Oscar knows kpub = (n, e) and the ciphertext y .
▶ Assume n to be N bits.

▶ Apply brute force to find x
▶ Need O(2N) time.

▶ Factor n into p and q
▶ Apply integer factorization.
▶ If p and q are chosen to be around N

2 -bit, then this will take

Oscar O(2
N
2 ) time.

▶ Both are not practical for large N.
▶ At least N = 2048 to be secure in long term.
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Padding

▶ Oscar may derive useful statistics about plaintext from
ciphertext since RSA is deterministic.

▶ Oscar may recover small x if e is small by trying to compute
e
√
y , e

√
y + n, etc. using usual (non-modular) math.

▶ Oscar may modify y to change the plaintext in predictable
ways: for any chosen s, if y ′ = sey , then x ′ = dkpr (y

′) = sx .

▶ Use padding to introduce random structure into plaintext.

▶ E.g. Optimal Asymmetric Encryption Padding (OAEP) in
Public Key Cryptography Standard #1 (PKCS #1).

▶ A lot of other considerations for both security and
performance.
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Summary

▶ RSA
▶ Key generation: by Bob, kpub = (n, e), kpr = (p, q, d)
▶ Encryption: everyone, y = ekpub(x) = xe mod n.
▶ Decryption: Bob only, x = dkpr (y) = yd mod pq.
▶ Assumption: Oscar cannot factorize n into p and q in

polynomial time.

▶ Similar to other cryptosystems, there are a lot of pitfalls for
actual implementaion – you should follow documented
standards exactly or use an established library instead.
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