
ECE 443/518 – Computer Cyber Security
Lecture 15 OpenSSL

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

October 6, 2025

1/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Outline

OpenSSL

HTTPS Authentications

2/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Midterm Exam

▶ Lecture 1 ∼ Lecture 14, see Homework 1 and 2 for sample.
▶ Points may be deducted if key steps are missing.

▶ Students registered for main campus section: Wed. 10/8,
11:25 AM – 12:40 PM, in class.
▶ A physical calculator is allowed. Laptop or any other electronic

device or calculator apps running on them are not allowed.
▶ Closed book/notes. A letter-size page of cheat sheet is allowed.

▶ Online students may take the exam as above, or contact
Charles Scott (scott@iit.edu) to make arrangement and
confirm with me.
▶ No make-up exam will be offered if you fail to do so.

▶ ADA Accommodations: contact Center for Disability Resource
(disabilities@iit.edu)

▶ Emergency/extraordinary reasons for make-up midterm exams
are accepted only with documented proof like docter’s notes.

3/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: OpenSSL
▶ Please install OpenSSL using a package manager come with

your OS.
▶ For Windows, use Win64 OpenSSL v3.5.2 Light from

https://slproweb.com/products/Win32OpenSSL.html

▶ Next lecture (10/8): Midterm Exam

▶ No lecture on 10/13

▶ Lecture on 10/15: Secure Collaborations

4/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

https://slproweb.com/products/Win32OpenSSL.html


Outline

OpenSSL

HTTPS Authentications

5/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



OpenSSL

▶ A open-source software library to support TLS (Transport
Layer Security) protocols.
▶ Created in 1998, based on a previous open-source SSL (Secure

Sockets Layer) implementation.
▶ While TLS eventually replaced SSL, OpenSSL keeps its name

as many other libraries and APIs.

▶ A toolkit to access cryptography in practice.
▶ libcrypto: the core library of OpenSSL implementing

standard cryptographic algorithms.
▶ libssl: the OpenSSL library implementing TLS protocols

based on libcrypto
▶ libcrypto and libssl are widely used in applications, server

software, and programming languages to provide support for
cryptography and TLS.

▶ openssl: the OpenSSL program to access its functionality
from command-line.

6/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Symmetric Cryptography with OpenSSL

▶ openssl-rand: CSPRNG

openssl rand -hex 16

▶ The -hex option allows to output the 16 random bytes in hex
encoding like 00112233445566778899aabbccddeeff.

▶ openssl-dgst: hash functions and digital signatures

openssl dgst -sha256 plain.txt

▶ openssl-enc: symmetric ciphers
▶ No, you should not use this in production since no AEAD

algorithms are supported in command-line for security reasons.
▶ You can access AEAD algorithms from a programming

language or within a protocol like TLS.

7/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Public-Key Cryptography with OpenSSL

▶ openssl-genpkey: key pair generation

openssl genpkey -algorithm RSA -out priv.pem

-pkeyopt rsa_keygen_bits:2048

▶ The .pem file allows to encode binary data in PEM, a textual
format, so it can be distributed via email.

▶ But you are not supposed to email the RSA private key!

▶ openssl-pkey: key pair processing

openssl pkey -in priv.pem -pubout -out pub.pem

▶ Extract the public key and save it in PEM format that can be
emailed.

▶ Inspect the RSA keys to show (p, q, d) and (n, e)

openssl pkey -in priv.pem -text -noout

openssl pkey -in pub.pem -pubin -text -noout

8/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Public-Key Cryptography with OpenSSL (Cont.)

▶ Use openssl-dgst for digital signatures.

openssl dgst -sha256 -sign priv.pem -out sig.bin msg.txt

openssl dgst -sha256 -verify pub.pem -signature sig.bin msg.txt

▶ Need a hash algorithm to sign messages of arbitrary length.
▶ Signatures are stored in bytes instead of PEM.
▶ Signatures are usually part of a higher level protocol, like a

TLS certificate, where an encoding to a textual format, like
PEM, is defined.

▶ Other popular public-key algorithms.
▶ EC: ECDSA (Elliptic Curve Digital Signature Algorithm) with a

few choices of standard curves.
▶ Ed25519: EdDSA (Edwards-curve Digital Signature

Algorithm) with a specific curve.

▶ Unlike RSA where encryption/decryption is supported, most
other public-key algorithms are for digital signatures only.
▶ As discussed in our lectures, public-key algorithms are used for

key exchange, and for authentication via digital signatures.

9/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Outline

OpenSSL

HTTPS Authentications

10/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



HTTPS Authentication Overview

▶ HTTPS use TLS protocols to authenticate servers and
optionally clients.
▶ Based on PKI
▶ Since multiple parties are involved for multiple steps, it is

important for us to understand where the inputs come from
and where the outputs are used for each party and step.

▶ Certificate Authority (CA)
▶ Make use of public-key cryptography: kpub,CA and kpr ,CA.
▶ Use kpr ,CA to sign certificates for servers and clients.
▶ Distribute kpub,CA to servers and clients so they can verify

certificates signed by CA.
▶ Maintain CRL to revoke certificates

11/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



HTTPS Authentication Overview (Cont.)

▶ Server authentication
▶ A server has its own key pair: kpub,server and kpr ,server
▶ Request CA to sign its certificate with its identity IDserver and

public key kpub,server .
▶ Send the certificate when clients connect via TLS.

▶ Client authentication (optional)
▶ A client has its own key pair: kpub,client and kpr ,client
▶ Request CA to sign its certificate with its identity IDclient and

public key kpub,client .
▶ When the client connects via TLS, the server provides a list of

CAs it will accept, then the client sends the certificate signed
by one of the CAs.

12/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



CA Setup

▶ Generate private key kpr ,CA with pass phrase protection.

openssl genpkey -algorithm RSA -out CA.key -aes256

-pkeyopt rsa_keygen_bits:4096

▶ But servers and clients will not accept an arbitrary public key.
▶ They only accept certificates signed by a known CA.
▶ But this is our root CA and no other CA is supposed to sign a

certificate for it.

▶ Create a self-signed root certificate to be distributed.

openssl req -x509 -new -key CA.key -days 3650

-subj "/CN=MyRootCA" -out CA.pem

▶ openssl req -x509 specifically create a certificate for a
public key and then sign it by its own private key.

▶ X.509 (-x509) is a standard format for public-key certificate.
▶ Subject (-subj) is the identity of a certificate.

▶ Inspect the root certificate.

openssl x509 -in CA.pem -text -noout

13/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Server Certificate: Server Actions

▶ Generate private key kpr ,server
openssl genpkey -algorithm RSA -out server.key

-pkeyopt rsa_keygen_bits:2048

▶ Could use less protection for server – less RSA bits.
▶ A server program usually need to load its private key at start

without human input so no pass phrase here.

▶ Create a Certificate Signing Request (CSR)

openssl req -new -key server.key

-subj "/CN=localhost" -out server.csr

▶ openssl req (without -x509) creates a CSR.
▶ Include kpub,server extracted from kpr ,server (server.key)
▶ Provide server’s DNS name (/CN) for its identity (-subj) –

use localhost for a testing server running on the same
machine as clients.

▶ Include a digital signature of the CSR itself signed by kpr ,server
– ensure the CSR is created by who owns the private key.

14/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Server Certificate: CA Actions

▶ Once CA receives the CSR from a server, it signs a certificate
based on the CSR, and send the certificate back to the server.

openssl x509 -req -in server.csr -CA CA.pem -CAkey CA.key

-CAcreateserial -out server.pem -days 365 -sha256

-extfile server.ext

▶ Verify the digital signature in CSR.
▶ CA’s certificate (-CA) provides CA’s information like its

identity to be included into server’s certificate.
▶ CA’s private key (-CAkey) is used to sign server’s certificate.
▶ -CAcreateserial provides a simple mechanism to maintain a

unique serial number per certificate. This serial number is used
later to identify a certificate, e.g. in the CRL.

▶ -extfile provides additional information required by X.509v3
extensions for server authentications

▶ Inspect and verify the server certificate.

openssl x509 -in server.pem -text -noout

openssl verify -CAfile CA.pem server.pem

15/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Client Certificate

▶ The general steps to create client certificates are the same as
that for server certificates.
▶ Generate private key kpr ,client for the client
▶ Create a CSR to be sent to CA.
▶ CA signs the certificate based on the CSR.

▶ Differences
▶ The private key kpr ,client can be protected by a pass phrase.
▶ Client identity (-subj) in CSR doesn’t need to be a DNS

name – could be username, email, phone number etc.
▶ Use extensions (-extfile) for client authentications.

16/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Practical Considerations

▶ Do you realize there is a critical question we haven’t answer
yet for production settings?
▶ How does CA authenticate servers and clients? I.e. how does

CA know the CSRs are from who they claim to be?

▶ Distributed server authentication with DNS
▶ A server need to be reachable on Internet from the DNS name

it claims to own.
▶ Used by Let’s Encrypt, where the Automatic Certificate

Management Environment (ACME) protocol defines the
communications between CA and server so a certificate can be
created and delivered automatically.

17/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



PKCS #12

▶ What if DNS doesn’t apply? E.g. for client authentications.
▶ Or when organizations prefer a centralized approach.

▶ Asking servers and clients to generate their own private keys
and then CSRs would require interactions with CA.
▶ At least two messages, one for CSR and one for certificate.
▶ Difficult to automate.

▶ Let CA generate keys, CSRs, and certificates for everyone
▶ Less secure as CA now knows everyone’s private key.
▶ Simplify management. Easy to automate.

▶ PKCS #12: safe delivery of private key and certificate

openssl pkcs12 -export -inkey client.key -in client.pem

-certfile CA.pem -out client.p12 -name "Alice"

▶ Bundle a private key, its certificate, and possibly the CA chain
into a single file to simplify communication.

▶ Encrypt the file with a password so only who has the password
can access the private key.

18/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Summary

▶ Learn to use OpenSSL and other tools to work with
cryptography standards and protocols.

19/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT


	OpenSSL
	HTTPS Authentications

