1/21

ECE 443/518 — Computer Cyber Security
Lecture 17 Secure Collaborations

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

October 15, 2025

ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Outline

Secure Collaborations

Coin Flipping

Collaborative Data Management

2/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Reading Assignment

» This lecture: Secure Collaborations

> Next lecture: Consensus and Cryptocurrency

3/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Outline

Secure Collaborations

4/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Collaborations

» Parties collaborate to achieve a common objective.

» For purposes like doing business, gambling, decision making.
» Involve both computation and communication.

» Lack of trust: what if someone cheats?

» Leakage of sensitive data.
» Manipulation toward unfair or incorrect results.

» Laws help to protect against such issues in our daily life.
» Need enforcement, by some party that is trusted by everyone.
» Only for deterrence.
» What about reliability issues like corrupted computation or
communication?

5/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Secure Collaborations

» Solve collaboration as a security problem.
» Threats: everyone will cheat whenever possible.

» There is no trusted third party.

» This also models failures in communication channels — either
the sender sends bad messages or the receiver claims to receive
bad messages.

» Policy: objective of collaboration as security properties.

» E.g. authentication, integrity, and confidentiality.

» For our lectures, we assume authentication is supported by
digital signatures, and focus on different collaborations that
may require different levels of integrity and confidentiality.

» Mechanism and protocol design to enforce policy.

» Allow parties to participate if they behave well.
» Reject parties whenever they cheat.

6/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Outline

Coin Flipping

7/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Coin Flipping

» The most primitive (true) random number generator.
» Widely used in dispute resolution.
» The coin flipping game between Alice and Bob.

1. Alice calls the coin flip C € {heads, tails}.
2. Bob flips the coin and report the result R.
3. Alice wins if C == R; otherwise Bob wins.

» Fair coin: 50/50 chance for heads/tails.

> |If we assume that Alice can observe Bob's coin flipping results
to decide the chances of heads/tails, then Bob have to use a
fair coin to avoid losing money in the long run.

» What if Alice and Bob need to play the game over phone?
» No trusted third party.

8/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Cheaters

» Bob cheats by knowing Alice’s call C and reporting R # C.

» Bob can further provide a video of R.
» If you are thinking about live streaming, why you believe the
streaming is live?

» If we modify the game to ask Bob to flip and report R first,
then Alice may cheat by calling C = R.

9/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Mechanism Design: Commitment Scheme

» Commitment scheme: allow one to publish a secret message
that will be revealed at a later time.

» Commitment: the message cannot be modified once published.
» Commitment scheme can be implemented via hash h().
1. Alice chooses a random number k and sends Bob a = h(C||k).
2. Bob sends R.
3. Alice reveals C and k for Bob to verify h(C||k) == a.
4. Alice wins if C == R; otherwise Bob wins.
» Bob cannot cheat as long as h() is preimage resistant.
» Otherwise Bob can recover C from a and report R = C.
» Alice cannot cheat as long as h() is collision resistant.

» Otherwise Alice can find k; and k; to satisfy
h(heads|| ki) == h(tails||kz), and reveal k; or ko depending on
Bob's R.

10/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Dice Roller and Mental Poker

» How can Alice and Bob roll a dice over the phone?

P A real challenge: how can Alice and Bob play poker over the
phone?

11/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Outline

Collaborative Data Management

12/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Collaborative Data Management

» Data management
» Data set: other's public keys, business transactions, etc.
» Operations: CRUD (Create, Read, Update and Delete).

» Collaborative
» Everyone is allowed to modify the data.

> Security property

> Ignore confidentiality.

» Integrity and nonrepudiation: integrity is violated if someone
modifies data without following a protocol; optionally,
nonrepudiation helps to identify who modifies the data.

» Version control and auditing: track history of how the data set
changes, and know who made the change via nonrepudiation.

> Integrity also detects data corruption.

» E.g. due to faults in memory, hard drive, and networks.
» |t is possible to recover corrupted data, though the techniques
are out of the scope of this course.

13/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

A Naive Protocol

> Append to the data set its own hash.
» Sign the hash if nonrepudiation is required.
» Store all versions of the data set and the hash.
» As well as the signatures for auditing.
P Issues
» Performance: not efficient to hash a large data set whenever it

is modified.
> Storage: cannot afford to store all versions of a large data set.
» Auditing: we need to prove that the two versions is indeed
before and after a change — storing all versions does not help.

14/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Integrity and Data Structure

» For performance concerns, it is perferable to only hash the
modification but not the whole data set.

» Need to understand how the data set manages data.
» A popular choice of data structure is a tree.

» Unsorted to represent hierarchical data, e.g. files and
directories.

> Sorted to represent key-value associations, e.g. map/dictionary
or database tables.

» Other data structures can be treated as a tree, e.g. linked list
as a tree without branches.

» We can hash the tree nodes instead of the whole tree.

» Modification to a tree is limited to the path from the node
being modified to the root — to hash all nodes along the path
is efficient!

» But how can the relations between the nodes be protected?

15/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Hashes as 'Cryptographic’ Pointers

> Tree uses pointers to maintain relations between nodes.

» Pointers cannot be reused in different programs, not to
mention on different computers used for collaboration.
» Anyone can modify a node and then the whole subtree,

without being caught.
» We need pointers that provide cryptographic guarantees.

» Merkle hash tree: hash of a node can work as its address.

» Does not rely on a particular program or computer.
» Practically, collision resistant implies that two nodes will have

different hashes if they have different content.

» Nonrepudiation can be achieved by signing the hashes and
store the signatures with the hashes.

16/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Example: Git

blob size
== Testing library

This library is used to test
Ruby projects.

blob size
The MIT License

Copyright (e) 2008 Scott Chacon

Permission is hereby granted,
free of charge. to any person

blob size
Fasirelitestruntt!
» Git is a popular software for version control.
» Data set as a Merkle hash tree.
» Two types of nodes: blob for files, tree for directories.
» Each node is hashed with SHA-1 (only first 20 bits are shown).
> Integrity is guaranteed since modification of node content

without changing it hash in the parent node will be detected.
17/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

(Pro Git)

Version Control

bak

3cdedc
tree new.txt

test.txt

1f7a7a
"version 2"

>
2155eb /test.txt
tree
new.txt fad9b

"new file" =+

d8329f 83base
tree test.txt # nyersion 1"

(Pro Git)
» Each modification results in a new root node.

» Replaced nodes are preserved for version control.
» There is no need to store any node more than once.
» No matter how many times it appears in the history.

18/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Integrity of History

1a410e

third commit new. txt

test.txt

1f7a7a
"version 2"

test.txt
cacfca

second commit
new. txt fa49b@

"new file"
fdfafc 83baae
first commit test.txt » wyergion 1"

L , . (Pro Git)
» Use another Merkle hash tree consisting of 'commit’ nodes to

protect integrity of history.
» The data structure is actually a directed acyclic graph (DAG),
though the idea of using hashes to replace pointers is the same.
» What if multiple parties modify the data set at the same time?

19/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Branches

origin/
featureA

origin/
Y Y

4b078 = ledee = 33009 = aadgg = 774p3 = 5399
k

e5bef = 85127 - cd685

1 —
bada featureB

. . i . . éPro Git)
> Git allows simultaneous modifications to happen on different
branches of the tree consisting of commits.
» With some efforts, branches can be merged to incorporate
changes together.
» What if we need to apply similiar ideas to an application
where branches are not allowed?
» Then multiple parties need to agree on what 'main branch’ to
modify and who makes the modification.
» That is another difficult secure collaboration problem.
20/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

I

Summary

» Seemingly impossible secure collaborations, like coin flipping,
can be implemented via cryptographic constructions.

» Merkle hash tree provides an all-in-one solution for complex
data management tasks with integrity guarantee.

21/21 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

	Secure Collaborations
	Coin Flipping
	Collaborative Data Management

