
ECE 443/518 – Computer Cyber Security
Lecture 17 Secure Collaborations

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

October 15, 2025

1/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Secure Collaborations

Coin Flipping

Collaborative Data Management

2/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Reading Assignment

▶ This lecture: Secure Collaborations

▶ Next lecture: Consensus and Cryptocurrency

3/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Secure Collaborations

Coin Flipping

Collaborative Data Management

4/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Collaborations

▶ Parties collaborate to achieve a common objective.
▶ For purposes like doing business, gambling, decision making.
▶ Involve both computation and communication.

▶ Lack of trust: what if someone cheats?
▶ Leakage of sensitive data.
▶ Manipulation toward unfair or incorrect results.

▶ Laws help to protect against such issues in our daily life.
▶ Need enforcement, by some party that is trusted by everyone.
▶ Only for deterrence.

▶ What about reliability issues like corrupted computation or
communication?

5/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Secure Collaborations

▶ Solve collaboration as a security problem.
▶ Threats: everyone will cheat whenever possible.

▶ There is no trusted third party.
▶ This also models failures in communication channels – either

the sender sends bad messages or the receiver claims to receive
bad messages.

▶ Policy: objective of collaboration as security properties.
▶ E.g. authentication, integrity, and confidentiality.
▶ For our lectures, we assume authentication is supported by

digital signatures, and focus on different collaborations that
may require different levels of integrity and confidentiality.

▶ Mechanism and protocol design to enforce policy.
▶ Allow parties to participate if they behave well.
▶ Reject parties whenever they cheat.

6/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Secure Collaborations

Coin Flipping

Collaborative Data Management

7/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Coin Flipping

▶ The most primitive (true) random number generator.
▶ Widely used in dispute resolution.

▶ The coin flipping game between Alice and Bob.

1. Alice calls the coin flip C ∈ {heads, tails}.
2. Bob flips the coin and report the result R.
3. Alice wins if C == R; otherwise Bob wins.

▶ Fair coin: 50/50 chance for heads/tails.
▶ If we assume that Alice can observe Bob’s coin flipping results

to decide the chances of heads/tails, then Bob have to use a
fair coin to avoid losing money in the long run.

▶ What if Alice and Bob need to play the game over phone?
▶ No trusted third party.

8/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Cheaters

▶ Bob cheats by knowing Alice’s call C and reporting R ̸= C .
▶ Bob can further provide a video of R.
▶ If you are thinking about live streaming, why you believe the

streaming is live?

▶ If we modify the game to ask Bob to flip and report R first,
then Alice may cheat by calling C = R.

9/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Mechanism Design: Commitment Scheme

▶ Commitment scheme: allow one to publish a secret message
that will be revealed at a later time.
▶ Commitment: the message cannot be modified once published.

▶ Commitment scheme can be implemented via hash h().

1. Alice chooses a random number k and sends Bob a = h(C ||k).
2. Bob sends R.
3. Alice reveals C and k for Bob to verify h(C ||k) == a.
4. Alice wins if C == R; otherwise Bob wins.

▶ Bob cannot cheat as long as h() is preimage resistant.
▶ Otherwise Bob can recover C from a and report R = C .

▶ Alice cannot cheat as long as h() is collision resistant.
▶ Otherwise Alice can find k1 and k2 to satisfy

h(heads||k1) == h(tails||k2), and reveal k1 or k2 depending on
Bob’s R.

10/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Dice Roller and Mental Poker

▶ How can Alice and Bob roll a dice over the phone?

▶ A real challenge: how can Alice and Bob play poker over the
phone?

11/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Secure Collaborations

Coin Flipping

Collaborative Data Management

12/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Collaborative Data Management

▶ Data management
▶ Data set: other’s public keys, business transactions, etc.
▶ Operations: CRUD (Create, Read, Update and Delete).

▶ Collaborative
▶ Everyone is allowed to modify the data.

▶ Security property
▶ Ignore confidentiality.
▶ Integrity and nonrepudiation: integrity is violated if someone

modifies data without following a protocol; optionally,
nonrepudiation helps to identify who modifies the data.

▶ Version control and auditing: track history of how the data set
changes, and know who made the change via nonrepudiation.

▶ Integrity also detects data corruption.
▶ E.g. due to faults in memory, hard drive, and networks.
▶ It is possible to recover corrupted data, though the techniques

are out of the scope of this course.

13/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

A Naive Protocol

▶ Append to the data set its own hash.
▶ Sign the hash if nonrepudiation is required.

▶ Store all versions of the data set and the hash.
▶ As well as the signatures for auditing.

▶ Issues
▶ Performance: not efficient to hash a large data set whenever it

is modified.
▶ Storage: cannot afford to store all versions of a large data set.
▶ Auditing: we need to prove that the two versions is indeed

before and after a change – storing all versions does not help.

14/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Integrity and Data Structure

▶ For performance concerns, it is perferable to only hash the
modification but not the whole data set.
▶ Need to understand how the data set manages data.

▶ A popular choice of data structure is a tree.
▶ Unsorted to represent hierarchical data, e.g. files and

directories.
▶ Sorted to represent key-value associations, e.g. map/dictionary

or database tables.
▶ Other data structures can be treated as a tree, e.g. linked list

as a tree without branches.

▶ We can hash the tree nodes instead of the whole tree.
▶ Modification to a tree is limited to the path from the node

being modified to the root – to hash all nodes along the path
is efficient!

▶ But how can the relations between the nodes be protected?

15/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Hashes as ’Cryptographic’ Pointers

▶ Tree uses pointers to maintain relations between nodes.
▶ Pointers cannot be reused in different programs, not to

mention on different computers used for collaboration.
▶ Anyone can modify a node and then the whole subtree,

without being caught.
▶ We need pointers that provide cryptographic guarantees.

▶ Merkle hash tree: hash of a node can work as its address.
▶ Does not rely on a particular program or computer.
▶ Practically, collision resistant implies that two nodes will have

different hashes if they have different content.

▶ Nonrepudiation can be achieved by signing the hashes and
store the signatures with the hashes.

16/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Example: Git

(Pro Git)▶ Git is a popular software for version control.
▶ Data set as a Merkle hash tree.

▶ Two types of nodes: blob for files, tree for directories.
▶ Each node is hashed with SHA-1 (only first 20 bits are shown).

▶ Integrity is guaranteed since modification of node content
without changing it hash in the parent node will be detected.

17/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Version Control

(Pro Git)

▶ Each modification results in a new root node.

▶ Replaced nodes are preserved for version control.
▶ There is no need to store any node more than once.

▶ No matter how many times it appears in the history.

18/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Integrity of History

(Pro Git)
▶ Use another Merkle hash tree consisting of ’commit’ nodes to

protect integrity of history.
▶ The data structure is actually a directed acyclic graph (DAG),

though the idea of using hashes to replace pointers is the same.

▶ What if multiple parties modify the data set at the same time?
19/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Branches

(Pro Git)▶ Git allows simultaneous modifications to happen on different
branches of the tree consisting of commits.
▶ With some efforts, branches can be merged to incorporate

changes together.
▶ What if we need to apply similiar ideas to an application

where branches are not allowed?
▶ Then multiple parties need to agree on what ’main branch’ to

modify and who makes the modification.
▶ That is another difficult secure collaboration problem.

20/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Summary

▶ Seemingly impossible secure collaborations, like coin flipping,
can be implemented via cryptographic constructions.

▶ Merkle hash tree provides an all-in-one solution for complex
data management tasks with integrity guarantee.

21/21 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

	Secure Collaborations
	Coin Flipping
	Collaborative Data Management

