
ECE 443/518 – Computer Cyber Security
Lecture 19 Proof of Work, Smart Contract

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

October 22, 2025

1/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Proof of Work

Smart Contract

2/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Reading Assignment

▶ This lecture: Proof of Work, Smart Contract

▶ Next lecture: Bitcoin Security

3/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Proof of Work

Smart Contract

4/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

BFT Meets Cryptocurrency

▶ Consensus on what the next block should be is a must for
cryptocurrency.
▶ Otherwise adversaries can create branches for double spending.

▶ Many BFT protocols are too weak to be useful here.
▶ E.g. both the ones without or with digital signatures need to

know how many traitors are there, but for cryptocurrrency
adversary can create arbitrary number of “traitor” accounts.

▶ The BFT propocol need to weight the participants differently.
▶ So adversaries cannot simply overwhelm the protocol by

creating more accounts, a.k.a. Sybil attack.

5/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Proof of Work (PoW)

▶ Who willing to generate the next block needs to perform
certain amount of work before it could join the BFT protocol.
▶ Typical work: for a block of hash s, find x so that h(s||x) is

smaller than a threshold.
▶ If h is preimage resistant, one can only find such x via

brute-force.
▶ Block time: the expected time for some account to find a

solution x .
▶ When more computational power are available, the threshold is

reduced such that the block time remains unchanged.

▶ Who willing to participate will have an account to receive
economic incentives for the work.

▶ Proof of Work consensus: the branch with the most of work is
the correct one
▶ The consensus can be reached as long as honest account

owners can provide majority of work.

6/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Obtaining the Blockchain

▶ Consider an account that want to generate the next block.
▶ By using a program together with its private key.

▶ The program connects to Internet to query the blockchain.
▶ However, there could be adversaries so the program must

decide if the chain it receives is valid or not.

▶ The genesis block: the first block of the blockchain.
▶ The genesis block is assumed to be well-known, usually coded

into the program directly.
▶ The genesis block could contain data like cryptocurrency

parameters and initial balances for certain accounts.

▶ The program need to validate past transactions.
▶ It is necessary to accumulate balances for all accounts to

decide if transactions are valid – this is possible now since our
computers are actually quite powerful.

▶ However, recall that valid transactions along cannot prevent
branches (and thus double spending).

7/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

PoW Fork Choice

▶ Fork: the program may receive multiple blockchains all with
the same correct genesis block.
▶ They diverge somewhere back in the history.
▶ Resulting from a temporary network partitioning or an attack.

▶ Choice: with PoW, the program should pick the blockchain
with the most of the work as the correct one.
▶ The work is measured as the total effort to solve the problems

for all the blocks along the chain.

▶ 51% attack: attackers controlling more than half of the
computational power could collude to cause a successful fork.
▶ Suppose currently the honest accounts are at the chain

A → B → · · · → C from an earlier block A.
▶ The attackers make a fork A → B ′ and continue.
▶ No matter how many blocks are there between A and C, the

attackers can eventually reach D’ as A → B ′ → · · · → D ′, that
contains more work than the chain created by the honest
accounts now as A → B → · · · → C → · · · → D

8/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

PoW Finality

▶ With 51% attack, powerful attackers can revert transactions
by creating successful forks.
▶ It may take some time but 100% the attack will be successful.

▶ Can attackers with less computational power revert a block?
▶ Finality: we need to define when a block is considered “final”

and thus is not supposed to be changed or reverted.
▶ Fake check scams are classical examples of attacks on finality

for our banking system.
▶ Consider an attacker controlling 25% of computational power

▶ Suppose the current chain is A → B and honest accounts are
working on the block C .

▶ If B is considered final immediately, the attacker will attempt
to make a fork A → B ′ → C ′ when A was ready.

▶ If C ′ can be generated ahead of C in time, honest accounts
may simply follow the chain A → B ′ → C ′.

▶ With 25% of computational power, this may happen with a
probability of (25%75%)2 = 1

9 .
▶ Practically, one should wait a few blocks to reduce the chance

of having forks due to possible attacks.
9/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Economic Incentives

▶ How could PoW cryptocurrencies actually survive when
finality is always probablistic, and when powerful adversaries
could have the majority of computational power?

▶ Economic incentives to attract honest accounts to participate
in the BFT protocol.
▶ Transaction fees: the account creates the next block will take

all the transaction fees.
▶ When there is more transactions than what the next block can

hold, payers compete by paying more transaction fees.

▶ Mining: the account creates the next block is allowed to award
itself a predefined amount of money.

▶ As a transaction with no payer.

▶ As a consequence, powerful adversaries have economic
incentives to not cheat.
▶ It is more rewarding to participate honestly than to make the

cryptocurrency useless by attacking it.

10/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Proof of Stake (PoS)

▶ PoW consensus achieves a great success and enables a lot of
honest account owners to participate.

▶ For a fixed block time, need to increase complexity of work.
▶ So more energy is needed to generate one block.
▶ hardware depreciation + energy cost + profit = mining income

▶ Proof of stake: accounts stake a certain amount of the
cryptocurrency itself to participate in the consensus process.
▶ Without the need of computing complex works (and thus

consume less energy) to resist Sybil attacks.
▶ Honest accounts are rewarded with transaction fees.
▶ Attackers may have their staked cryptocurrency burned.

11/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Outline

Proof of Work

Smart Contract

12/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

From Ledger to State Machine

▶ The ledger as stored in the block chain can be treated as a
very simple state machine.
▶ Initial state: initial account balances
▶ Currect state: current account balances
▶ State transitions: each blockchain transaction updates account

balances by addition and subtraction.

▶ The blockchain can support more complex state machines.
▶ Allow accounts to define state variables in addition to balance.
▶ Allow blockchain transactions to perform more operations on

state variables than simple addition and subtraction.

▶ This is similar to how we build computer hardware and
software to support general purpose computing need.
▶ E.g. Ethereum Virtual Machine (EVM) defined by the

Ethereum blockchain uses 8-bit opcode and a stack to organize
its 256-bit registers, and supports high-level programming
languages like Solidity.

13/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Smart Contract

▶ What are the benefits of running state machines and thus
programs in a blockchain?
▶ Not for efficiency: each computation needs to be executed as

many times as anyone would need to validate the blockchain,
using the same inputs and generating the same output.

▶ Nonrepudiation: the account initiates a computation must sign
the request and cannot deny so.

▶ Integrity: the outcome is permanentely recorded in the
blockchain and cannot be reverted.

▶ As long as there is no branch.

▶ That is what is necessary to execute a contract.
▶ Smart contract: a program running inside a blockchain.

14/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

A Smart Contract Example

pragma solidity 0.8.7;

contract VendingMachine {

// Declare state variables of the contract

address public owner;

mapping (address => uint) public cupcakeBalances;

// When ’VendingMachine’ contract is deployed:

// 1. set the deploying address as the owner of the contract

// 2. set the deployed smart contract’s cupcake balance to 100

constructor() {

owner = msg.sender;

cupcakeBalances[address(this)] = 100;

}

...

▶ A smart contract that you can buy cupcakes on Ethereum.
▶ No you don’t receive an actual cupcake.

▶ What you received could be treated as a ticket or token to
redeem a physical cupcake somewhere.

15/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Smart Contract Account

...

constructor() {

owner = msg.sender;

cupcakeBalances[address(this)] = 100;

}

...

▶ Once created, a smart contract will has its own address, as
indicated by address(this)

▶ Other accounts interact with the smart contract by sending
(signed) messages to the smart contract account.

▶ The smart contract will handle these messages in member
functions.
▶ constructor is a special one called for the first message

which deploys the smart contract.

16/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

The Message Sender

contract VendingMachine {

// Declare state variables of the contract

address public owner;

mapping (address => uint) public cupcakeBalances;

// When ’VendingMachine’ contract is deployed:

// 1. set the deploying address as the owner of the contract

// 2. set the deployed smart contract’s cupcake balance to 100

constructor() {

owner = msg.sender;

cupcakeBalances[address(this)] = 100;

}

...

▶ msg.sender indicates who initiates the computation.
▶ The payer of cryptocurrency.
▶ You pay to deploy a smart contract and to interact with it –

you are consuming computational resources in the blockchain.
▶ The sender should in addition specify what transactions

(member function) is to be performed (called).
▶ E.g. one of constructor, refill, and purchase
▶ Plus other necessary parameters.

17/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Transactions

contract VendingMachine {

...

// Allow the owner to increase the smart contract’s cupcake balance

function refill(uint amount) public {

require(msg.sender == owner, "Only the owner can refill.");

cupcakeBalances[address(this)] += amount;

}

// Allow anyone to purchase cupcakes

function purchase(uint amount) public payable {

require(msg.value >= amount * 1 ether, "1 ETH per cupcake");

require(cupcakeBalances[address(this)] >= amount, "Not enough in stock");

cupcakeBalances[address(this)] -= amount;

cupcakeBalances[msg.sender] += amount;

}

}

▶ msg.value indicates money the sender pays the the contract.
▶ The money is transfered from the sender address to the

contract address automatically if the computation completes
successfully.

▶ How could one withdraw money from the contract?
18/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Complications

▶ What if there is an infinite loop into a smart contract?
▶ Can be exploited by adversaries to jam the blockchain.
▶ In theory, we cannot detect if there is an infinite loop in a

program.
▶ On blockchain, we can solve the issue by limiting the number

of instructions a smart contract may execute by the
transaction fee the sender would like to pay.

▶ Since the program of a smart contract need to be deployed to
the blockchain, everyone can see and analyze it.
▶ Bugs in the program could be found and exploited by

adversaries.

19/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

Summary

▶ Both proof of work (PoW) and proof of stake (PoS) work as
the consensus mechanism for cryptocurrencies.

▶ Smart contracts are programs running inside a blockchain,
reacting to blockchain events.

20/20 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT

	Proof of Work
	Smart Contract

