1/20

ECE 443/518 — Computer Cyber Security
Lecture 19 Proof of Work, Smart Contract

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

October 22, 2025

ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Outline

Proof of Work

Smart Contract

2/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Reading Assignment

» This lecture: Proof of Work, Smart Contract

» Next lecture: Bitcoin Security

3/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Outline

Proof of Work

4/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

BFT Meets Cryptocurrency

» Consensus on what the next block should be is a must for
cryptocurrency.
» Otherwise adversaries can create branches for double spending.
» Many BFT protocols are too weak to be useful here.

» E.g. both the ones without or with digital signatures need to
know how many traitors are there, but for cryptocurrrency
adversary can create arbitrary number of “traitor” accounts.

» The BFT propocol need to weight the participants differently.

» So adversaries cannot simply overwhelm the protocol by
creating more accounts, a.k.a. Sybil attack.

5/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Proof of Work (PoW)

» Who willing to generate the next block needs to perform
certain amount of work before it could join the BFT protocol.

» Typical work: for a block of hash s, find x so that h(s||x) is
smaller than a threshold.

» If his preimage resistant, one can only find such x via
brute-force.

» Block time: the expected time for some account to find a
solution x.

» When more computational power are available, the threshold is
reduced such that the block time remains unchanged.

» Who willing to participate will have an account to receive
economic incentives for the work.

» Proof of Work consensus: the branch with the most of work is
the correct one

» The consensus can be reached as long as honest account
owners can provide majority of work.

6/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Obtaining the Blockchain

» Consider an account that want to generate the next block.
» By using a program together with its private key.
» The program connects to Internet to query the blockchain.
» However, there could be adversaries so the program must
decide if the chain it receives is valid or not.
» The genesis block: the first block of the blockchain.
» The genesis block is assumed to be well-known, usually coded
into the program directly.
» The genesis block could contain data like cryptocurrency
parameters and initial balances for certain accounts.
» The program need to validate past transactions.

» |t is necessary to accumulate balances for all accounts to
decide if transactions are valid — this is possible now since our
computers are actually quite powerful.

» However, recall that valid transactions along cannot prevent
branches (and thus double spending).

7/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

PoW Fork Choice

» Fork: the program may receive multiple blockchains all with
the same correct genesis block.
» They diverge somewhere back in the history.
» Resulting from a temporary network partitioning or an attack.

» Choice: with PoW, the program should pick the blockchain
with the most of the work as the correct one.
» The work is measured as the total effort to solve the problems
for all the blocks along the chain.

» 51% attack: attackers controlling more than half of the
computational power could collude to cause a successful fork.

» Suppose currently the honest accounts are at the chain
A— B — ---— C from an earlier block A.

» The attackers make a fork A — B’ and continue.

» No matter how many blocks are there between A and C, the
attackers can eventually reach D' as A — B’ — --- — D', that
contains more work than the chain created by the honest
accountsnowas A—+B —---—>C—---— D

8/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

PoW Finality

» With 51% attack, powerful attackers can revert transactions
by creating successful forks.
» |t may take some time but 100% the attack will be successful.
» Can attackers with less computational power revert a block?
» Finality: we need to define when a block is considered “final”
and thus is not supposed to be changed or reverted.
» Fake check scams are classical examples of attacks on finality
for our banking system.
» Consider an attacker controlling 25% of computational power
» Suppose the current chain is A — B and honest accounts are
working on the block C.
» |If B is considered final immediately, the attacker will attempt
to make a fork A — B’ — C’ when A was ready.
» |f C’ can be generated ahead of C in time, honest accounts
may simply follow the chain A — B’ — C’.
» With 25% of computational power, this may happen with a

probability of (22:)2 = 1

=1
» Practically, one should wait a few blocks to reduce the chance

of having forks due to possible attacks.
9/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Economic Incentives

» How could PoW cryptocurrencies actually survive when
finality is always probablistic, and when powerful adversaries
could have the majority of computational power?

» Economic incentives to attract honest accounts to participate
in the BFT protocol.

» Transaction fees: the account creates the next block will take
all the transaction fees.

» When there is more transactions than what the next block can
hold, payers compete by paying more transaction fees.

» Mining: the account creates the next block is allowed to award
itself a predefined amount of money.

P> As a transaction with no payer.

> As a consequence, powerful adversaries have economic
incentives to not cheat.

» |t is more rewarding to participate honestly than to make the
cryptocurrency useless by attacking it.

10/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Proof of Stake (PoS)

» PoW consensus achieves a great success and enables a lot of
honest account owners to participate.
» For a fixed block time, need to increase complexity of work.
» So more energy is needed to generate one block.
» hardware depreciation + energy cost + profit = mining income
» Proof of stake: accounts stake a certain amount of the
cryptocurrency itself to participate in the consensus process.

> Without the need of computing complex works (and thus
consume less energy) to resist Sybil attacks.

» Honest accounts are rewarded with transaction fees.

» Attackers may have their staked cryptocurrency burned.

11/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Outline

Smart Contract

12/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

From Ledger to State Machine

» The ledger as stored in the block chain can be treated as a
very simple state machine.

» [nitial state: initial account balances

» Currect state: current account balances

» State transitions: each blockchain transaction updates account
balances by addition and subtraction.

» The blockchain can support more complex state machines.

» Allow accounts to define state variables in addition to balance.

» Allow blockchain transactions to perform more operations on
state variables than simple addition and subtraction.

» This is similar to how we build computer hardware and
software to support general purpose computing need.

» E.g. Ethereum Virtual Machine (EVM) defined by the
Ethereum blockchain uses 8-bit opcode and a stack to organize
its 256-bit registers, and supports high-level programming
languages like Solidity.

13/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Smart Contract

» What are the benefits of running state machines and thus
programs in a blockchain?

» Not for efficiency: each computation needs to be executed as
many times as anyone would need to validate the blockchain,
using the same inputs and generating the same output.

» Nonrepudiation: the account initiates a computation must sign
the request and cannot deny so.

> Integrity: the outcome is permanentely recorded in the
blockchain and cannot be reverted.

» As long as there is no branch.

> That is what is necessary to execute a contract.
» Smart contract: a program running inside a blockchain.

14/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

A Smart Contract Example

pragma solidity 0.8.7;

contract VendingMachine {
// Declare state variables of the contract
address public owner;
mapping (address => uint) public cupcakeBalances;

// When ’VendingMachine’ contract is deployed:
// 1. set the deploying address as the owner of the contract
// 2. set the deployed smart contract’s cupcake balance to 100
constructor() {

owner = msg.sender;

cupcakeBalances [address(this)] = 100;
}

» A smart contract that you can buy cupcakes on Ethereum.
» No you don't receive an actual cupcake.

» What you received could be treated as a ticket or token to
redeem a physical cupcake somewhere.

15/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Smart Contract Account

constructor() {

owner = msg.sender;

cupcakeBalances [address(this)] = 100;
}

» Once created, a smart contract will has its own address, as
indicated by address(this)

» Other accounts interact with the smart contract by sending
(signed) messages to the smart contract account.

» The smart contract will handle these messages in member
functions.

» constructor is a special one called for the first message
which deploys the smart contract.

16/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

The Message Sender

contract VendingMachine {
// Declare state variables of the contract
address public owner;
mapping (address => uint) public cupcakeBalances;

// When ’VendingMachine’ contract is deployed:
// 1. set the deploying address as the owner of the contract
// 2. set the deployed smart contract’s cupcake balance to 100
constructor() {

owner = msg.sender;

cupcakeBalances [address(this)] = 100;
}

> msg.sender indicates who initiates the computation.
» The payer of cryptocurrency.
» You pay to deploy a smart contract and to interact with it —
you are consuming computational resources in the blockchain.
» The sender should in addition specify what transactions
(member function) is to be performed (called).
» E.g. one of constructor, refill, and purchase
» Plus other necessary parameters.
17/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Transactions

contract VendingMachine {

// Allow the owner to increase the smart contract’s cupcake balance
function refill(uint amount) public {
require(msg.sender == owner, "Only the owner can refill.");
cupcakeBalances [address(this)] += amount;

}

// Allow anyone to purchase cupcakes

function purchase(uint amount) public payable {
require(msg.value >= amount * 1 ether, "1 ETH per cupcake");
require(cupcakeBalances[address(this)] >= amount, "Not enough in stock");
cupcakeBalances [address(this)] -= amount;
cupcakeBalances [msg.sender] += amount;

}

}

» msg.value indicates money the sender pays the the contract.
» The money is transfered from the sender address to the
contract address automatically if the computation completes
successfully.

» How could one withdraw money from the contract?
18/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Complications

» What if there is an infinite loop into a smart contract?

» Can be exploited by adversaries to jam the blockchain.

» In theory, we cannot detect if there is an infinite loop in a
program.

» On blockchain, we can solve the issue by limiting the number
of instructions a smart contract may execute by the
transaction fee the sender would like to pay.

» Since the program of a smart contract need to be deployed to
the blockchain, everyone can see and analyze it.

» Bugs in the program could be found and exploited by
adversaries.

19/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

Summary

» Both proof of work (PoW) and proof of stake (PoS) work as
the consensus mechanism for cryptocurrencies.

» Smart contracts are programs running inside a blockchain,
reacting to blockchain events.

20/20 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT

	Proof of Work
	Smart Contract

