ECE 443/518 – Computer Cyber Security Lecture 21 Secure Multi-Party Computation

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

October 29, 2025

Outline

Oblivious Transfer (OT)

Secure Multi-Party Computation

Idea of Garbled Circuit

Reading Assignment

► This lecture: Secure Multi-Party Computation

Next lecture: Garbled Circuit

Outline

Oblivious Transfer (OT)

Oblivious Transfer (OT)

- Alice runs a pay-per-view service that provides access to n messages m_1, m_2, \ldots, m_n .
- ▶ Bob would like to access a particular message m_k .
- ▶ Bob don't want to let Alice know what is k.
 - For privacy reasons.
- ▶ Bob don't want to pay Alice a lot of money to obtain all the messages in order to hide k.
- Let's consider the simple case for two messages (n = 2).
 - ightharpoonup Alice's secret: m_1, m_2 .
 - ▶ Bob's secret: $k \in \{1, 2\}$.
 - At the end, Bob learns m_k but not the other among the two messages, and Alice learns nothing about k.
- ► How could this even be possible?
 - Assume Alice and Bob are honest but curious.

Mechanism Design

- Alice's RSA key pair: $k_{pr} = (n = pq, d), k_{pub} = (n, e).$
- 1. Alice sends Bob two random messages x_1 and x_2 .
- 2. Bob generates a random message y and sends Alice v.
 - $V = (y^e + x_k) \mod n$.
- 3. Alice sends Bob m'_1 and m'_2 .
 - $m_1' = m_1 + ((v x_1)^d \mod n).$
 - $m_2' = m_2 + ((v x_2)^d \mod n).$
- 4. Bob computes $m'_k y$ to recover m_k .
 - For k = 1, RSA guarantees that $m'_1 = m_1 + ((v x_1)^d \mod n) = m_1 + (y^{ed} \mod n) = m_1 + y$.
 - ightharpoonup Same applies when k=2.
 - \triangleright So Bob indeed learns m_k .

Analysis for Alice

- ▶ The only piece of information Alice directly learns from Bob is the message ν .
 - $V = (y^e + x_k) \mod n$.
 - Note that Alice has no kwowledge about y and k.
- \triangleright With x_1 and x_2 , Alice may derive y_1 and y_2 .
 - $v_1 = (v x_1)^d \mod n$.
 - $V_2 = (v x_2)^d \mod n$.
- $v \equiv y_1^e + x_1 \equiv y_2^e + x_2 \pmod{n}$.
 - Alice cannot decide which of y_1 and y_2 is y.
- Alice learns nothing about Bob's secret k.
 - No matter how powerful Alice is.

Analysis for Bob

- Assume k = 1 for Bob.
 - ightharpoonup Bob will learn m_1 .
 - Does Bob learn anything about m₂?
- ▶ Bob learns x_1, x_2, m'_1, m'_2 directly from Alice.
 - \triangleright x_1 and x_2 are simply random messages, providing no information on m_2 .
 - $ightharpoonup m_1' = m_1 + y$, having nothing to do with m_2 .
- $m_2' \equiv m_2 + (v x_2)^d \equiv m_2 + (y^e + x_1 x_2)^d \pmod{n}.$
 - If Bob is able to learn m_2 , then Bob learns $m'_2 m_2$ which is $(y^e + x_1 x_2)^d$.
 - Since Bob also knows $y^e + x_1 x_2$, this implies Bob is able to decrypt $y^e + x_1 x_2$ into $(y^e + x_1 x_2)^d$ without knowing d.
 - Since Alice chooses x_1 and x_2 arbitrarily, to decrypt $y^e + x_1 x_2$ means Bob could decrypt any message encrypted without knowing d this breaks RSA.
- ▶ Bob, if computationally bounded, learns nothing about m₂.

Outline

Oblivious Transfer (OT)

Secure Multi-Party Computation

Idea of Garbled Circuit

Secure Multi-Party Computation

- Assume there are n honest-but-curious parties $1, 2, \ldots, n$.
- \triangleright Each party k possesses a secret value v_k .
- ▶ Together they compute $f = F(v_1, v_2, ..., v_n)$.
 - \triangleright For a well-known function F.
- Confidentiality: secret remains secret.
 - Any party *k* should only learn *f* from the computation, but nothing more about secrets of other parties.
- Ignore integrity issues.

Examples: Voting

- Secret from every party: 0 or 1
- F computes the summation.
- \triangleright Every party learns only f, the number of 1's.
- A party may learn exactly what other parties vote, e.g.
 - ▶ When there is only two parties, both know.
 - ▶ When f = 0 or n, everyone knows.
 - ▶ When f = 1 or n 1, who votes 1 or 0 knows.

Examples: Salary Comparison

- Secret from every party: a number representing salary.
- F computes the maximum.
- \triangleright Every party learns only f, the highest salary.
- ▶ If there are only two parties Alice and Bob,
 - Alice, if earns more, won't learn Bob's salary.
 - ▶ What if Alice run the salary comparison multiple times, each with a different number? Then she may know Bob's salary!
- ► Mechanism for secure multi-party computation should prevent evaluating *F* multiple times without consent from all parties.
 - ▶ A party is not able to change its secret when evaluating *F*.

Outline

Idea of Garbled Circuit

Secure Two-Party Computation

- Let's consider two parties for simplicity.
- ► How could you represent arbitrary computations?

Circuit

- ► Encode secrets from Alice and Bob, as well as the result *f* from the computation, all as binary strings.
- F then becomes a boolean function.
 - Implemented as a boolean circuit.
- In particular, a combinational circuit.
 - ▶ Whose size is proportional to the effort to compute *F*.
 - We will not distinguish F from its combinational circuit implementation.

Example: NAND

- ▶ Secret from Alice: $a \in \{0, 1\}$
- ▶ Secret from Bob: $b \in \{0, 1\}$
- ► Can they compute f = NAND(a, b) without revealing their own secrets?
 - If we could further extend this to any input bits and any number of NAND gates, then we could handle arbitrary combinational circuits.
- Note that for f = NAND(a, b), if Bob chooses b = 1 then he can learn a from f.
 - This is allowed per definition of secure multi-party computation.
 - Not a concern if Bob chooses b = 0, or the circuit is much more complicated.

Idea of Garbled Circuit

- A collaboration between Alice and Bob.
- ► The garbler Alice garbles the circuit.
 - By encrypting every wire and every gate.
 - ► Send Bob the garbled circuit.
 - Send Bob her input bits (encrypted).
- Alice also helps Bob to encrypt his input bits.
 - ➤ So Bob is not able to change them and evaluate the circuit multiple times in order to learn Alice's input bits.
 - But what prevents Alice to learn Bob's input bits? How could Alice encrypts bits without knowing it?
- ▶ Then the evaluator Bob evalutes the garbled circuit.
 - Compute with encrypted boolean values.
- Finally Bob communicate with Alice to reveal the output bits.

Encrypting Wires

- For any wire W, Alice generates a random selection bit S_w .
- ▶ Then, Alice generates two random binary strings W_0 and W_1 .
 - \triangleright W_0 represents signal 0 and starts with S_w .
 - \triangleright W_1 represents signal 1 and starts with $1 S_w$.
 - Essentially S_w prevents Bob to learn which each random string represents but still provide some useful structure.
- ► Alice can tell what signal a binary string represents by inspecting its first bit.
- For the circuit O = NAND(A, B), there are three wires.

Wire	Selection Bit	0	1
0	So	$O_0 = S_O \cdots$	$O_1=(1-S_O)\cdots$
A	S_A	$A_0 = S_A \cdots$	$A_1=(1-S_A)\cdots$
В	S_B	$B_0 = S_B \cdots$	$B_1=(1-S_B)\cdots$

Encrypting Wires (Cont.)

For example, let's use 5 bits for each wire.

Wire	Selection Bit	0	1
0	$S_O = 1$	$O_0 = 10001 = 17$	$O_1 = 00101 = 5$
A	$S_A=0$	$A_0 = 00110 = 6$	$A_1 = 10000 = 16$
В	$S_B = 1$	$B_0 = 10010 = 18$	$B_1 = 00010 = 2$

- Alice cannot send Bob the above table.
 - Otherwise Bob can evaluate the circuit multiple times with different signals to learn Alice's input bits.
- ▶ Bob need to calculate O_f from A_a and B_b .
 - ightharpoonup Recall that f = NAND(a, b)

Discussions

Wire	Selection Bit	0	1
0	$S_O = 1$	$O_0 = 10001 = 17$	$O_1 = 00101 = 5$
Α	$S_A=0$	$A_0 = 00110 = 6$	$A_1 = 10000 = 16$
В	$S_B = 1$	$B_0 = 10010 = 18$	$B_1 = 00010 = 2$

- When completed, Bob sees about half of the table.
 - ▶ Bob learns one binary string per wire, e.g A_a , B_b , and O_f .
 - But Bob should not be able to learn the selection bits except for his input and the final output.
- Alice should prevent Bob to guess other binary strings and selection bits in the table correctly.
 - With *m* bits, Bob has a chance of $\frac{1}{2^m}$ to guess both the binary string and the selection bit correctly for each wire.
 - A very small chance even for a single wire if *m* is large enough.
 - ▶ Work on Homework 3 to see cases when Bob cannot guess them no matter what, using an argument similar to OTP.
- ▶ How could Bob calculate O_f from A_a and B_b ?
 - For *NAND* in our example or more generally other gates.

Summary

- Oblivious transfer (OT) as a building block for more complicated protocols.
- Secure two-party computation via garbled circuit.