ECE 443/518 – Computer Cyber Security Lecture 22 Garbled Circuit

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

November 3, 2025

Outline

Garbled NAND

Garbled Circuit

Reading Assignment

- ► This lecture: Garbled Circuit
- Next lecture: Fully Homomorphic Encryption

Outline

Garbled NAND

Garbled Circuit

Encrypting Wires

Use 5 bits for each wire.

Wire	Selection Bit	0	1
0	$S_O = 1$	$O_0 = 10001 = 17$	$O_1 = 00101 = 5$
A	$S_A=0$	$A_0 = 00110 = 6$	$A_1 = 10000 = 16$
В	$S_B = 1$	$B_0 = 10010 = 18$	$B_1 = 00010 = 2$

- Alice cannot send Bob the above table.
- ▶ However, for the computation to proceed, Bob need to know A_a and B_b , and then calculate O_f .
- ▶ In general, we should assume Bob has no knowledge of a, b and f so that the idea will work for more complex circuits as multiple levels of gates.

Garbled Truth Table

S(A)	S(B)	E(O)
$S_A=0$	$S_B = 1$	$e_{A_0,B_0}(O_1) = 6 + 18 + 5 \mod 32 = 29$
$S_A=0$	$1 - S_B = 0$	$e_{A_0,B_1}(O_1) = 6 + 2 + 5 \mod 32 = 13$
$1-S_A=1$	$S_B = 1$	$e_{A_1,B_0}(O_1) = 16 + 18 + 5 \mod 32 = 7$
$1-S_A=1$	$1-S_B=0$	$e_{A_0,B_1}(O_1) = 6 + 2 + 5 \mod 32 = 13$ $e_{A_1,B_0}(O_1) = 16 + 18 + 5 \mod 32 = 7$ $e_{A_1,B_1}(O_0) = 16 + 2 + 17 \mod 32 = 3$

- With the help of an encryption function e(), Alice encrypts every gate truth table.
 - e will take A and B as key and O as the plaintext.
 - Subscripts are the actual boolean values, e.g. for A_0 and B_0 , we should use O_1 because 0 NAND 0 = 1.
 - Let's use $e_{A||B}(O) = A + B + O \mod 32$ for our example.

Evaluating Garbled Truth Table

S(A)	S(B)	E(O)
0	1	29
0	0	13
1	1	7
1	0	3

- ▶ Alice sends the encrypted truth table to Bob.
 - ▶ Hide the binary strings and the selection bits for wires.
- ▶ Bob decrypts with this table to obtain O_f from A_a and B_b .
 - ▶ Using the first bit of A_a and B_b to identify the row for $E(O_f)$.
 - Since $e_{A||B}(O) = A + B + O \mod 32$, $O_f = E(O_f) - A_a - B_b \mod 32$
- ▶ For example, for $A_a = 16$ and $B_b = 18$,
 - \triangleright $S(A_a) = 1$ and $S(B_b) = 1$, so use the third row $E(O_f) = 7$.
 - $O_f = 7 16 18 \mod 32 = 5.$
- ▶ But Bob can learn S_A and S_B from the table and know what A and B represent

Reordering Tables

▶ Alice sorts the rows into S(A)S(B) = 00,01,10,11.

S(A)	S(B)	E(O)
0	0	13
0	1	29
1	0	3
1	1	7

- ▶ Consider $A_a = 16$ and $B_b = 18$ again,
 - ▶ Bob still has $S(A_a) = 1$ and $S(B_b) = 1$
 - Now it is the fourth row $E(O_f) = 7$.
 - ▶ Bob still computes $O_f = 7 16 18 \mod 32 = 5$.
 - Though Bob has no idea what a, b and f are.

Input and Output

- For input wires,
 - Alice sends Bob A_a.
 - ▶ Alice uses OT to send Bob *B_b*.
 - Obviously Bob doesn't want Alice to know b.
- ▶ Once Bob calculates O_f , Alice tells what is f.
- ▶ Alice has no need to send Bob A_{1-a} .
- ▶ Could Alice also send Bob B_{1-b} to avoid using OT?
 - Alice cannot send Bob B_{1-b} .
 - Otherwise Bob can compute $O_{f'}$ from A_a and B_{1-b} and then $a = O_{f'} \oplus O_f$ since f' = NAND(a, 1 b).
 - ► In other words, Alice should prevent Bob to evaluate the garbled circuit multiple times using different secrets from Bob.

Outline

Garbled NAND

Garbled Circuit

A More Complicated Circuit

- What about more complicated circuits?
 - ▶ E.g. f = NAND(NAND(a, b), NAND(c, d)) where Alice provides a and c while Bob provides b and d.
- ldentify wires and gates before encrypting them.
 - ▶ Wires: A, B, C, D, X, Y, Z

 - Gate 3: Z = NAND(X, Y)

The Garbler Alice: Encrypting Wires

Wire	Selection Bit	0	1	
Α	$S_A=0$	$A_0 = 00110 = 6$	$A_1 = 10000 = 16$	
В	$S_B = 1$	$B_0 = 10010 = 18$	$B_1 = 00010 = 2$	
C	$S_C = 1$	$C_0 = 10100 = 20$	$C_1 = 00001 = 1$	
D	$S_D = 1$	$D_0 = 11001 = 25$	$D_1 = 00111 = 7$	
X	$S_X = 0$	$X_0 = 00111 = 7$	$X_1 = 11111 = 31$	
Y	$S_Y = 0$	$Y_0 = 00000 = 0$	$Y_1 = 10101 = 21$	
Ζ	$S_Z = 1$	$Z_0 = 10001 = 17$	$Z_1 = 00101 = 5$	

The Garbler Alice: Encrypting Truth Tables

C-+- 1						
	Gate 1					
S(A)	S(B)	E(X)				
$S_A=0$	$S_B = 1$	$e_{A_0,B_0}(X_1) = 6 + 18 + 31 \mod 32 = 23$				
$S_A=0$	$1 - S_B = 0$	$e_{A_0,B_1}(X_1) = 6 + 2 + 31 \mod 32 = 7$				
$1-S_A=1$	$S_B=1$	$e_{A_1,B_0}(X_1) = 16 + 18 + 31 \mod 32 = 1$				
$1-S_A=1$	$1-S_B=0$	$e_{A_1,B_1}(X_0) = 16 + 2 + 7 \mod 32 = 25$				
	Gate 2					
S(C)	S(D)	E(Y)				
$S_C = 1$	$S_D = 1$	$e_{C_0,D_0}(Y_1) = 20 + 25 + 21 \mod 32 = 2$				
$S_C = 1$	$e_{C_0,D_1}(Y_1) = 20 + 7 + 21 \mod 32 = 16$					
$1 - S_C = 0$	$S_D = 1$	$e_{C_1,D_0}(Y_1) = 1 + 25 + 21 \mod 32 = 15$				
$1-S_C=0$						
Gate 3						
S(X) S(Y) E(Z)						
$S_X=0$	$S_Y = 0$	$e_{X_0,Y_0}(Z_1) = 7 + 0 + 5 \mod 32 = 12$				
$S_X=0$	$1-S_Y=1$	$e_{X_0, Y_1}(Z_1) = 7 + 21 + 5 \mod 32 = 1$				
$1-S_X=1$	$1 - S_X = 1$ $S_Y = 0$ $e_{X_1, Y_0}(Z_1) = 31 + 0 + 5 \mod 32 = 4$					
$1 - S_X = 1 \mid 1 - S_Y = 1 \mid e_{X_1, Y_1}(Z_0) = 31 + 21 + 17 \mod 32 = 5$						

The Evaluator Bob

► The garbled circuit sent by Alice

Gate 1			Gate 2		Gate 3	
ł					$C(Y) C(Y) \mid \Gamma(7)$	
l	S(A) S(B)		3(C) 3(D)	E(Y)	2(V) 2(V)	E(Z)
	0 0	7	0 0	8	0 0	12
	0 1	23	0 1	15	0 1	1
	1 0	25	1 0	16	1 0	4
	1 1	1	1 1	2	1 1	5

- ▶ Alice sends her inputs: $A_a = 16$, $C_c = 20$
- ▶ Alice sends Bob's inputs via OT: $B_1 = 2$, $D_1 = 7$
- ► Bob's calculation
 - $X_x = 25 16 2 \mod 32 = 7$
 - $Y_v = 16 20 7 \mod 32 = 21$
 - $Z_z = 1 7 21 \mod 32 = 5$
- After Bob shares $Z_z = 5$ with Alice, both party learn the result f = 1.

Discussions

- ► The mechanism works with arbitrary number of NAND gates, and thus any combinational circuits.
 - Bob can evaluate each gate following the topological ordering, without knowing what each gate inputs and gate output mean.
- Overall, there is constant amount of computation and communication per each NAND gate.
 - ► Efficient in theory.
- ▶ A lot of ongoing research to improve its practical performance