1/19

ECE 443/518 — Computer Cyber Security
Lecture 23 Fully Homomorphic Encryption

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

November 5, 2025

ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Outline

Fully Homomorphic Encryption

The DGHV Scheme

2/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Reading Assignment

» This lecture: Fully Homomorphic Encryption
» Next lecture: ICS 2-7,14

3/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Outline

Fully Homomorphic Encryption

4/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Limitations of Garbled Circuit

» One-time use: a garbled circuit can be evaluated only once.
» The garbler Alice has to generate a new garbled circuit for
every evaluation.
» Otherwise the evaluator Bob will be able to learn intermediate
and final bits.
P Interactive: Alice needs to interact with Bob to encrypt his
input via OT.
» Not compact: Alice needs to send Bob the new garbled circuit
whose size has the same complexity as the computation itself.
» Can we simply ask Alice to encrypt her data before sending it
to Bob, and allow Bob to compute with it?

» Reusable circuit, non-interactive, compact communication
» The result should also be encrypted so Bob need help from
Alice to know it

5/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Compute with Encrypted Data

» Design a cipher (Enc and Dec) such that for any function
z = f(x,y), Alice and Bob can find a function F to compute
Z = F(X,y) together as follows:
> Alice chooses a secret key, computes X = Enc(key, x), and
sends Bob only X.
» Bob computes Z = F(X, y) and sends Alice Z.
» Alice decrypts Z as z = Dec(key, Z) and it should hold that
z =f(x,y).
» Bob doesn't know key so he cannot derive x and z from X
and Z respectively.

6/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Discussions

1. Alice computes X = Enc(key, x) and sends Bob X.

2. Bob computes Z = F(X,y) and sends Alice Z.

3. Alice computes z = Dec(key, Z).

» Computation efficiency (for Alice): Enc and Dec should not
depend on

» Communication efficiency: sizes of X and Z should be linear
to those of x and z respectively.

» We don't say Z = Enc(key, z) in case Enc is probabilistic.

v

Enc and Dec could use public/private key pairs.

» y could include inputs from Bob that he wants to hide, and
public inputs like constants used in f.

7/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Potential Applications

» Secure two-party computation without garbled circuit.
» Alice encrypts her inputs and sends them to Bob.
» Bob provides his inputs in plaintext and runs the computation.
» Bob sends the encrypted result with Alice, who then decrypts
it and shares with Bob.
» Outsourcing machine learning models and inferences.
» Hidden model: Alice encrypts the model, Bob interacts with
clients to run inferences.
» Hidden inference: Bob has the model and helps Alice to run
inferences, while Alice keeps her inputs and results secret.
» Hidden model and inference: Alice encrypts both the model

and inputs, Bob computes and returns encrypted results but
knows nothing.

» And many more ...

» Only if we could design such a mechanism!

8/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Homomorphic Encryption

» A homomorphic encryption algorithm allows certain
computation to be executed on ciphertext.
> E.g. for multiplication, Enc(x)Enc(y) = Enc(xy)
» RSA encryption is homomorphic for multiplication.
» Enc(x) = x® mod p, Enc(y) = y© mod p
> Enc(xy) = (xy)¢ mod p = x°y® mod p
» Extend RSA to encrypt bits probabilistically.
> Enc(x) = (x + 2r)¢ mod p, Dec(X) = X9 mod p mod 2
» ris a random number.
» Now Dec(Enc(x)Enc(y)) = xy = AND(x,y)
> Note that Enc(x)Enc(y) could be different than Enc(xy)
because Enc is probabilistic.

» Homomorphic encryption for multiplication is simple.

9/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Fully Homomorphic Encryption (FHE)

» Fully homomorphic encryption: a homomorphic encryption
algorithm that support both multiplication and addition

» Allow Bob to perform complex computations on ciphertext.
» Consider fully homomorphic encryption for bits using the same
method we extend RSA.
» Dec(Enc(x)Enc(y)) = xy = AND(x,y),
Dec(Enc(x) + Enc(y)) = x + y = XOR(x, y)
» AND and XOR are universal for boolean circuits — Alice and
Bob are able to compute with encrypted data for any function.
» While researchers quickly identified this interesting idea in
1978 after invention of RSA, it takes more than 30 years to
find the first fully homomorphic encryption algorithm in 2009.

10/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Outline

The DGHV Scheme

11/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



The DGHV Fully Homomorphic Encryption Scheme

> A 2010 simplification of Gentry’s 2009 algorithm that works
with simple integer arithmetics.

» We'll present some basic ideas here as the whole scheme is still
quite complicated.
» Consider encryption of bits

> Key p: an odd integer
» Enc(x) =x+2r+qp
» Both r and g are random numbers so Enc is probabilistic.

» The random number r works as “noise” to prevent learning p
from ciphertexts by computing their GCDs.

» Dec(X) = X mod p mod 2

» We should require 2r +1 < p so X mod p = x + 2r — this is
essential for Dec to decrypt correctly without knowing r or q.

12/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



DGHV Examples

» Choose p =13
» With r=1and g =5,
» Enc(0)=0+2x1+5%13 =67
» Dec(67) = 67 mod 13 mod 2 =2 mod 2 =10
» With r =4 and g = 6,
> Enc(0)=0+2+4+6%13=2386
> Dec(86) =86 mod 13 mod 2 =8 mod 2 =0
» With r=6and g =1,
» Enc(l)=1+2%6+1x13=26
» But Dec(26) =26 mod 13 mod 2 =0 mod 2 =0
» The “noise” r is too big so decryption doesn’t work any more.
» Is DGHV homomorphic?

» Dec(67 +86) = 153 mod 13 mod 2 =10 mod 2 =0
» Dec(67 % 67) = 4489 mod 13 mod 2 =4 mod 2 =0
» But Dec(67 *86) = 5762 mod 13 mod 2 =3 mod 2 =1

13/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Somewhat Homomorphic

» Let X=Enc(x)=x+2rc+qxp and Y =Enc(y)=y+2r,+qy,p.
» Dec(X +Y)=(x+y)+2(rx+r,) mod p mod 2

» |t decrypts into x 4 y correctly if 2r, 4+ 2r, is small enough.
» Dec(X x Y) = xy + 2(rxy + ryx) + 4rcr, mod p mod 2

» It decrypts into xy correctly if 2r, * 2r, is small enough.

» Observation: a limited number of multiplications and
additions can be applied on the ciphertexts.
» Before “noises” grows too big so decryption no longer works.
» In particular, multiplication introduces more “noises” than
addition.

14/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



From Somewhat Homomorphic to Fully Homomorphic

» However, fully homomorphic encryption requries to work with
arbitrary number of multiplications and additions.

» Bob needs to reduce “noises” in the ciphertexts before they
grow too big in the process of computaion.

» In order to build a fully homomorphic encryption algorithm
from a somewhat homomorphic one.

» This is simple if Bob knows the key.

» Frist decrypt the ciphertext to obtain the plaintext.
» Then encrypt the plaintext again with a small “noise”.
» But Bob does not know the key.

» Insight: this is a problem of computing with encrypted data
itself — Bob can do it!

15/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Bootstrapping

» Alice encrypts the key with the key itself, and sends Bob the
encrypted key.
» As long as Alice doesn’t change her key, this step only needs
to be done once for all computations.
> To reduce the “noise” for a particular ciphertext, Bob
evaluates Dec using the somewhat homomorphic algorithm.
» Use the encrypted key and the ciphertext as the inputs.
» Since Dec computes the plaintext from the key and the
ciphertext, Bob will obtain the encrypted plaintext.
» The encrypted plaintext is indeed a new ciphertext that
decrypts to the same plaintext as the original ciphertext.
» Requirement: a proper design of Dec
» Use a limited number of multiplications and additions as
permitted by the somewhat homomorphic algorithm.
» Bound the “noise” in the new ciphertext so that they do not
grow too large before Bob applies the same reduction again.

16/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



DGHV Bootstrapping

» Let (X, p) be a circuit computing X mod p mod 2.
> Inputs are bits: X = (X, --- XoX1)2 and p = (pm - - - p2p1)2-
» Use AND and XOR gates and the constant bit 1.
» Alice encrypts each bit of p by itself: Enc(p1), ..., Enc(pm),
and sends them to Bob.
» For simplicity, we ask Bob to also encrypt the ciphertext bits
and the constants in the circuit.
» Bob can use 1 for Enc(1) and 0 for Enc(0) without knowing p.
» Bob computes Enc(X1), ..., Enc(Xy,) without Alice’s help.
» Bob evaluates f with encrypted bits of ciphertext and key
Enc(X1),..., Enc(Xm), Enc(p1), ..., Enc(pm)
» Replace AND with multiplication and XOR with addition.
» Since x = f(X, p), with encrypted X and p Bob should obtain
encrypted x, which is another ciphertext X’ of x.
» The "noises” in X’ depend on f and its inputs — independent
of the “noises” in X.

17/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



DGHV Bootstrapping Implementation

» Enc(Xi),...,Enc(Xnm) has a “noise” of 0.
» Since Bob use 1 for Enc(1) and 0 for Enc(0).
» Alice controls the “noises” in Enc(p1),. .., Enc(pm).
» We need to limit the number of AND and XOR gates in f.
» So that the “noises” do not increase beyond what plain DGHV
can handle.
» Ideas to implement f to meet the need.
> Ask Alice to encrypt an approximation of 1 (as a fixed point
number) so that mod p can be replaced by multiplication and
subtraction.
» Ask Alice to provide additional (encrypted) data to further
reduce the complexity of multiplication that would require a
lot of AND gates.

> We will stop here and let you explore further by yourself.

18/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



Summary

» Fully homomorphic encryption: compute with encrypted data
» Only owner of the encrypted data can decrypt the results.

19/19 ECE 443/518 — Computer Cyber Security, Dept. of ECE, IIT



	Fully Homomorphic Encryption
	The DGHV Scheme

