
ECE 443/518 – Computer Cyber Security
Lecture 23 Fully Homomorphic Encryption

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

November 5, 2025

1/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Outline

Fully Homomorphic Encryption

The DGHV Scheme

2/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: Fully Homomorphic Encryption

▶ Next lecture: ICS 2-7,14

3/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Outline

Fully Homomorphic Encryption

The DGHV Scheme

4/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Limitations of Garbled Circuit

▶ One-time use: a garbled circuit can be evaluated only once.
▶ The garbler Alice has to generate a new garbled circuit for

every evaluation.
▶ Otherwise the evaluator Bob will be able to learn intermediate

and final bits.

▶ Interactive: Alice needs to interact with Bob to encrypt his
input via OT.

▶ Not compact: Alice needs to send Bob the new garbled circuit
whose size has the same complexity as the computation itself.

▶ Can we simply ask Alice to encrypt her data before sending it
to Bob, and allow Bob to compute with it?
▶ Reusable circuit, non-interactive, compact communication
▶ The result should also be encrypted so Bob need help from

Alice to know it

5/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Compute with Encrypted Data

▶ Design a cipher (Enc and Dec) such that for any function
z = f (x , y), Alice and Bob can find a function F to compute
Z = F (X , y) together as follows:
▶ Alice chooses a secret key , computes X = Enc(key , x), and

sends Bob only X .
▶ Bob computes Z = F (X , y) and sends Alice Z .
▶ Alice decrypts Z as z = Dec(key ,Z ) and it should hold that

z = f (x , y).
▶ Bob doesn’t know key so he cannot derive x and z from X

and Z respectively.

6/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Discussions

1. Alice computes X = Enc(key , x) and sends Bob X .

2. Bob computes Z = F (X , y) and sends Alice Z .

3. Alice computes z = Dec(key ,Z ).

▶ Computation efficiency (for Alice): Enc and Dec should not
depend on f

▶ Communication efficiency: sizes of X and Z should be linear
to those of x and z respectively.

▶ We don’t say Z = Enc(key , z) in case Enc is probabilistic.

▶ Enc and Dec could use public/private key pairs.

▶ y could include inputs from Bob that he wants to hide, and
public inputs like constants used in f .

7/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Potential Applications

▶ Secure two-party computation without garbled circuit.
▶ Alice encrypts her inputs and sends them to Bob.
▶ Bob provides his inputs in plaintext and runs the computation.
▶ Bob sends the encrypted result with Alice, who then decrypts

it and shares with Bob.

▶ Outsourcing machine learning models and inferences.
▶ Hidden model: Alice encrypts the model, Bob interacts with

clients to run inferences.
▶ Hidden inference: Bob has the model and helps Alice to run

inferences, while Alice keeps her inputs and results secret.
▶ Hidden model and inference: Alice encrypts both the model

and inputs, Bob computes and returns encrypted results but
knows nothing.

▶ And many more ...

▶ Only if we could design such a mechanism!

8/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Homomorphic Encryption

▶ A homomorphic encryption algorithm allows certain
computation to be executed on ciphertext.
▶ E.g. for multiplication, Enc(x)Enc(y) = Enc(xy)

▶ RSA encryption is homomorphic for multiplication.
▶ Enc(x) = xe mod p, Enc(y) = y e mod p
▶ Enc(xy) = (xy)e mod p = xey e mod p

▶ Extend RSA to encrypt bits probabilistically.
▶ Enc(x) = (x + 2r)e mod p, Dec(X ) = X d mod p mod 2

▶ r is a random number.

▶ Now Dec(Enc(x)Enc(y)) = xy = AND(x , y)
▶ Note that Enc(x)Enc(y) could be different than Enc(xy)

because Enc is probabilistic.

▶ Homomorphic encryption for multiplication is simple.

9/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Fully Homomorphic Encryption (FHE)

▶ Fully homomorphic encryption: a homomorphic encryption
algorithm that support both multiplication and addition
▶ Allow Bob to perform complex computations on ciphertext.

▶ Consider fully homomorphic encryption for bits using the same
method we extend RSA.
▶ Dec(Enc(x)Enc(y)) = xy = AND(x , y),

Dec(Enc(x) + Enc(y)) = x + y = XOR(x , y)
▶ AND and XOR are universal for boolean circuits – Alice and

Bob are able to compute with encrypted data for any function.

▶ While researchers quickly identified this interesting idea in
1978 after invention of RSA, it takes more than 30 years to
find the first fully homomorphic encryption algorithm in 2009.

10/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Outline

Fully Homomorphic Encryption

The DGHV Scheme

11/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



The DGHV Fully Homomorphic Encryption Scheme

▶ A 2010 simplification of Gentry’s 2009 algorithm that works
with simple integer arithmetics.
▶ We’ll present some basic ideas here as the whole scheme is still

quite complicated.

▶ Consider encryption of bits

▶ Key p: an odd integer
▶ Enc(x) = x + 2r + qp

▶ Both r and q are random numbers so Enc is probabilistic.
▶ The random number r works as “noise” to prevent learning p

from ciphertexts by computing their GCDs.

▶ Dec(X ) = X mod p mod 2
▶ We should require 2r + 1 < p so X mod p = x + 2r – this is

essential for Dec to decrypt correctly without knowing r or q.

12/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



DGHV Examples

▶ Choose p = 13
▶ With r = 1 and q = 5,

▶ Enc(0) = 0 + 2 ∗ 1 + 5 ∗ 13 = 67
▶ Dec(67) = 67 mod 13 mod 2 = 2 mod 2 = 0

▶ With r = 4 and q = 6,
▶ Enc(0) = 0 + 2 ∗ 4 + 6 ∗ 13 = 86
▶ Dec(86) = 86 mod 13 mod 2 = 8 mod 2 = 0

▶ With r = 6 and q = 1,
▶ Enc(1) = 1 + 2 ∗ 6 + 1 ∗ 13 = 26
▶ But Dec(26) = 26 mod 13 mod 2 = 0 mod 2 = 0
▶ The “noise” r is too big so decryption doesn’t work any more.

▶ Is DGHV homomorphic?
▶ Dec(67 + 86) = 153 mod 13 mod 2 = 10 mod 2 = 0
▶ Dec(67 ∗ 67) = 4489 mod 13 mod 2 = 4 mod 2 = 0
▶ But Dec(67 ∗ 86) = 5762 mod 13 mod 2 = 3 mod 2 = 1

13/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Somewhat Homomorphic

▶ Let X =Enc(x)=x+2rx+qxp and Y =Enc(y)=y+2ry+qyp.
▶ Dec(X + Y ) = (x + y) + 2(rx + ry ) mod p mod 2

▶ It decrypts into x + y correctly if 2rx + 2ry is small enough.

▶ Dec(X ∗ Y ) = xy + 2(rxy + ryx) + 4rx ry mod p mod 2
▶ It decrypts into xy correctly if 2rx ∗ 2ry is small enough.

▶ Observation: a limited number of multiplications and
additions can be applied on the ciphertexts.
▶ Before “noises” grows too big so decryption no longer works.
▶ In particular, multiplication introduces more “noises” than

addition.

14/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



From Somewhat Homomorphic to Fully Homomorphic

▶ However, fully homomorphic encryption requries to work with
arbitrary number of multiplications and additions.

▶ Bob needs to reduce “noises” in the ciphertexts before they
grow too big in the process of computaion.
▶ In order to build a fully homomorphic encryption algorithm

from a somewhat homomorphic one.

▶ This is simple if Bob knows the key.
▶ Frist decrypt the ciphertext to obtain the plaintext.
▶ Then encrypt the plaintext again with a small “noise”.
▶ But Bob does not know the key.

▶ Insight: this is a problem of computing with encrypted data
itself – Bob can do it!

15/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Bootstrapping

▶ Alice encrypts the key with the key itself, and sends Bob the
encrypted key.
▶ As long as Alice doesn’t change her key, this step only needs

to be done once for all computations.

▶ To reduce the “noise” for a particular ciphertext, Bob
evaluates Dec using the somewhat homomorphic algorithm.
▶ Use the encrypted key and the ciphertext as the inputs.
▶ Since Dec computes the plaintext from the key and the

ciphertext, Bob will obtain the encrypted plaintext.
▶ The encrypted plaintext is indeed a new ciphertext that

decrypts to the same plaintext as the original ciphertext.

▶ Requirement: a proper design of Dec
▶ Use a limited number of multiplications and additions as

permitted by the somewhat homomorphic algorithm.
▶ Bound the “noise” in the new ciphertext so that they do not

grow too large before Bob applies the same reduction again.

16/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



DGHV Bootstrapping

▶ Let f (X , p) be a circuit computing X mod p mod 2.
▶ Inputs are bits: X = (Xn · · ·X2X1)2 and p = (pm . . . p2p1)2.
▶ Use AND and XOR gates and the constant bit 1.

▶ Alice encrypts each bit of p by itself: Enc(p1), . . . ,Enc(pm),
and sends them to Bob.

▶ For simplicity, we ask Bob to also encrypt the ciphertext bits
and the constants in the circuit.
▶ Bob can use 1 for Enc(1) and 0 for Enc(0) without knowing p.
▶ Bob computes Enc(X1), . . . ,Enc(Xm) without Alice’s help.

▶ Bob evaluates f with encrypted bits of ciphertext and key
Enc(X1), . . . ,Enc(Xm),Enc(p1), . . . ,Enc(pm)
▶ Replace AND with multiplication and XOR with addition.
▶ Since x = f (X , p), with encrypted X and p Bob should obtain

encrypted x , which is another ciphertext X ′ of x .
▶ The “noises” in X ′ depend on f and its inputs – independent

of the “noises” in X .

17/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



DGHV Bootstrapping Implementation

▶ Enc(X1), . . . ,Enc(Xm) has a “noise” of 0.
▶ Since Bob use 1 for Enc(1) and 0 for Enc(0).

▶ Alice controls the “noises” in Enc(p1), . . . ,Enc(pm).
▶ We need to limit the number of AND and XOR gates in f .

▶ So that the “noises” do not increase beyond what plain DGHV
can handle.

▶ Ideas to implement f to meet the need.
▶ Ask Alice to encrypt an approximation of 1

p (as a fixed point

number) so that mod p can be replaced by multiplication and
subtraction.

▶ Ask Alice to provide additional (encrypted) data to further
reduce the complexity of multiplication that would require a
lot of AND gates.

▶ We will stop here and let you explore further by yourself.

18/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT



Summary

▶ Fully homomorphic encryption: compute with encrypted data
▶ Only owner of the encrypted data can decrypt the results.

19/19 ECE 443/518 – Computer Cyber Security, Dept. of ECE, IIT


	Fully Homomorphic Encryption
	The DGHV Scheme

