
Homework 03
ECE 473/573, Fall 2025

Due Date: 10/05 (Sun.) by the end of the day (Chicago time)

Consider the following Go code where two goroutines ping and pong are supposed
to output “ping” and “pong” alternatively by collaborating via channels.

package main

import (

"fmt"

)

func ping(in <-chan bool, out chan<- int, n int) {

for i := 0; i < n; i++ {

<-in // wait for signal from pong or start

fmt.Printf("ping %d\n", i)

out <- i // let pong do its job

}

close(out) // notify pong of done

}

func pong(in <-chan int, out chan<- bool, done chan<- struct{}) {

for i := range in { // get i from ping

fmt.Printf("pong %d\n", i)

out <- false // let ping do its job

}

close(done) // notify main of done

}

func main() {

pi := make(chan bool) // line B

po := make(chan int)

done := make(chan struct{})

defer close(pi)

go ping(pi, po, 10)

1



ECE 473/573 – Cloud Computing and Cloud Native Systems, Fall 2025 2

go pong(po, pi, done)

fmt.Println("Start!")

// line A

<-done

}

1. (1 point) The desired output should be

Start!

ping 0

pong 0

ping 1

pong 1

ping 2

pong 2

ping 3

pong 3

ping 4

pong 4

ping 5

pong 5

ping 6

pong 6

ping 7

pong 7

ping 8

pong 8

ping 9

pong 9

However, go reports a deadlock after displaying “Start!”. Add a line at line A
so that ping and pong will start to output messages as desired. (Hint: send
something to ping!)

2. (1 point) Still, go reports a deadlock after dispalying all desired messages. Modify
line B to resolve the issue. Explain why. (Hint: what if you send something to a
channel but no one is receiving?)


