
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 07 RESTful Services

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

September 8, 2025

1/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Key-Value Store

RESTful Services

RESTful API Design

2/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 5

▶ Next lecture: 5

3/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Key-Value Store

RESTful Services

RESTful API Design

4/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Key-Value Store

▶ A simple example demonstrates ideas of cloud storage.
▶ Organize data as key-value pairs.

▶ Instead of complex relations as in SQL database.
▶ Each key is unique, with arbitrary value.
▶ What is the difference between this and map and dictionary

data structures in programming languages?

▶ Core requirement.
▶ Store arbitrary key-value pairs.
▶ Provide service endpoints (API) for put, get, delete.
▶ Persistently store data.
▶ Ensure idempotence.

▶ Build a minimum viable product (MVP) first.
▶ Start with absolute minimal functionality.
▶ Then add support for persistent store, security, operation.
▶ Consider scalability, fault resilience, etc.
▶ Serve as start point to learn industrial key-value stores.

5/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Idempotence

▶ An operation is idempotent if calling it multiple times has the
same effect as calling it once.
▶ A property with origin in algebra.

▶ Idempotence is critical for cloud native systems since faults
and failures need to be handled properly.

▶ For example, consider operations to control a light remotely
by sending “toggle” command.
▶ The light will return the current state of on or off.
▶ The light is on and we want to turn it off. However, after

sending “toggle”, we fail to receive the returned state.
▶ Is the light on or off? What to do next? Keep sending “toggle”

is not wise since that may turn the light on/off multiple times.

▶ In other words, this “toggle” operation is not idempotent.

6/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Idempotence (Cont.)

▶ Instead of “toggle”, we may redesign our light remote control
to use “turn on” and “turn off” commands.
▶ To turn off the light, we keep sending “turn off” until the

returned state is received successfully.
▶ The light will be turned off exactly once no matter there are

failures or not (assuming someone will repair any failed parts).
▶ “turn on” and “turn off” operations are idempotent!

▶ Idempotent operations focus only on end states.
▶ Safer when handling failures and faults.
▶ Often simpler to implement.
▶ More declarative to make communication more effective

between developers – tell me “what needs to be done” instead
of “how to do it”.

▶ So our key-value store only supports put, get, delete.
▶ All of them are idempotent.
▶ Instead of more complicated operations like ”update if value

equals”, which are not necessarily idempotent.

7/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Generation 0: The Core Functionality

var store = make(map[string]string) // global variable

var ErrorNoSuchKey = errors.New("no such key") // sentinel errors

func Put(key string, value string) error {

store[key] = value

return nil

}

func Get(key string) (string, error) {

value, ok := store[key]

if !ok {

return "", ErrorNoSuchKey

}

return value, nil

}

func Delete(key string) error {

delete(store, key)

return nil

}

▶ Need to provide service endpoints so the store can be
accessed from different processes and servers and languages.

8/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Key-Value Store

RESTful Services

RESTful API Design

9/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Generation 1: The Monolith

▶ Provide RESTful service endpoints over HTTP protocol.
▶ REpresentational State Transfer (REST) is a software

architechture for stateless and layerd web services.
▶ Map HTTP methods and paths into functionality.
▶ Accessed from network and supported by most languages.
▶ Simpler than most alternatives like gRPC.

▶ Build RESTful web services with Go.
▶ Standard net/http package.
▶ Third party packages like gorilla/mux for enhanced features.

10/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



A Minimal RESTful Service

package main

import (

"log"

"net/http"

"github.com/gorilla/mux"

)

func helloMuxHandler(w http.ResponseWriter, r *http.Request) {

w.Write([]byte("Hello gorilla/mux!\n"))

}

func main() {

r := mux.NewRouter()

r.HandleFunc("/", helloMuxHandler)

log.Fatal(http.ListenAndServe(":8080", r))

}

▶ Go has the ability to use packages directly from GitHub.
▶ Need to initialize the Go module to download packages and

their dependencies (more in Project 2).
▶ Also record the versions for the packages so future package

updates won’t break existing projects.
11/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Some Background on Networking and HTTP Protocol

▶ Services on a host (server) are accessed via a combination of,
▶ IP address of the host, e.g. 50.19.226.237
▶ Type of transport layer protocol, e.g. TCP or UDP.
▶ Port for the specific service, e.g. 8080.
▶ A protocol defining the meaning of the transfered bytes.

▶ DNS services translates domain names into IP addresses.
▶ E.g. “www.iit.edu” to 50.19.226.237
▶ May help to achieve scalability by rotating server IP addresses

for a single domain name.

▶ HTTP is a widely used protocol running on TCP transport.
▶ Supported directly by browsers.
▶ Access specific resource on a server with URL

protocol://user@host:port/path?query
▶ port can be omitted for the default: 80 for protocol being

http and 443 for protocol being https
▶ path may look like a filesystem path, it may or may not map

to an actual file.
▶ Empty user and ?query may be omitted.

12/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Where is our web service?

r.HandleFunc("/", helloMuxHandler)

log.Fatal(http.ListenAndServe(":8080", r))

▶ Support a path of / only.

▶ ":8080" indicates to use port 8080.
▶ Nothing before : in ":8080" means the service can be

accessed from any IP address of the server.
▶ A server can have multiple IP addresses.
▶ Include “localhost”, which is 127.0.0.1, widely used for

development and testing.
▶ Be careful with firewalls that may block the traffic.

13/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Key-Value Store

RESTful Services

RESTful API Design

14/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



RESTful API Design

▶ Use URL path to specify which resource to access.
▶ Use HTTP methods to specify operations on the resource.

▶ Usually one of GET, PUT, DELETE, POST.
▶ May use ?query as well.

▶ For our key-value store,
▶ Each key/value pair is specified by a path /v1/{key}, e.g.

/v1/a refers to the pair with key being “a”.
▶ Note that some part of the book incorrectly states the path to

be /v1/key/{key}.

▶ HTTP GET method maps to Get, where the value should be
returned in the HTTP response body.

▶ HTTP PUT method maps to Put, where the value is available
from the HTTP request body.

▶ HTTP DELETE method maps to Delete.

15/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Implementing GET

func keyValueGetHandler(w http.ResponseWriter, r *http.Request) {

vars := mux.Vars(r) // Retrieve "key" from the request

key := vars["key"]

value, err := Get(key) // Get value for key

if errors.Is(err, ErrorNoSuchKey) {

http.Error(w,err.Error(), http.StatusNotFound)

return

}

if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)

return

}

w.Write([]byte(value)) // Write the value to the response

}

func main() {

...

r.HandleFunc("/v1/{key}", keyValueGetHandler).Methods("GET")

▶ Pay attention to how to retrieve {key} from the path.
▶ A lot of error handling around Get that we have implemented

in Generation 0.
16/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Implementing PUT

func keyValuePutHandler(w http.ResponseWriter, r *http.Request) {

vars := mux.Vars(r) // Retrieve "key" from the request

key := vars["key"]

value, err := io.ReadAll(r.Body) // The request body has our value

defer r.Body.Close()

if err != nil { // If we have an error, report it

http.Error(w, err.Error(), http.StatusInternalServerError)

return

}

err = Put(key, string(value)) // Store the value as a string

if err != nil { // If we have an error, report it

http.Error(w, err.Error(), http.StatusInternalServerError)

return

}

w.WriteHeader(http.StatusCreated) // All good! Return StatusCreated

}

func main() {

...

r.HandleFunc("/v1/{key}", keyValuePutHandler).Methods("PUT")

...

17/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Concurrency

▶ It is possible for RESTful requests to arrive at the same time
and most web service frameworks handle them concurrently.
▶ Functions like keyValuePutHandler and

keyValueGetHandler may be called concurrently from
multiple threads, which will

▶ Call Get, Put, Delete from multiple threads, which is
▶ Not safe since all of them access store that is not thread-safe.

▶ Use a mutex (lock) for simplicity.
▶ Use sync.RWMutex to enable concurrent read to store.
▶ Refer to ece573-prj02/kvs/core.go for details.
▶ Still, only one thread can update store at a time.
▶ And there will be a lot of lock contentions if a lot of PUT

requests arrive at the same time.

18/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Take steps to design and implement RESTful services.

19/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Key-Value Store
	RESTful Services
	RESTful API Design

