ECE 473/573
Cloud Computing and Cloud Native Systems
Lecture 07 RESTful Services

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

September 8, 2025

1/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Key-Value Store

RESTful Services

RESTful API Design

2/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

» This lecture: 5
» Next lecture: 5

3/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Key-Value Store

4/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Key-Value Store

» A simple example demonstrates ideas of cloud storage.
» Organize data as key-value pairs.

» Instead of complex relations as in SQL database.

» Each key is unique, with arbitrary value.

» What is the difference between this and map and dictionary

data structures in programming languages?

» Core requirement.

» Store arbitrary key-value pairs.

> Provide service endpoints (API) for put, get, delete.

» Persistently store data.

» Ensure idempotence.

» Build a minimum viable product (MVP) first.

» Start with absolute minimal functionality.

» Then add support for persistent store, security, operation.
» Consider scalability, fault resilience, etc.

» Serve as start point to learn industrial key-value stores.

5/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Idempotence

6/19

An operation is idempotent if calling it multiple times has the
same effect as calling it once.

» A property with origin in algebra.
Idempotence is critical for cloud native systems since faults
and failures need to be handled properly.

For example, consider operations to control a light remotely
by sending “toggle” command.
» The light will return the current state of on or off.
» The light is on and we want to turn it off. However, after
sending “toggle”, we fail to receive the returned state.
» |s the light on or off? What to do next? Keep sending “toggle”
is not wise since that may turn the light on/off multiple times.

In other words, this “toggle” operation is not idempotent.

ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



|dempotence (Cont.)

> Instead of “toggle”, we may redesign our light remote control
to use “turn on” and “turn off” commands.

» To turn off the light, we keep sending “turn off” until the
returned state is received successfully.

» The light will be turned off exactly once no matter there are
failures or not (assuming someone will repair any failed parts).

> “turn on” and “turn off" operations are idempotent!

» Idempotent operations focus only on end states.

» Safer when handling failures and faults.

» Often simpler to implement.

» More declarative to make communication more effective
between developers — tell me “what needs to be done” instead
of “how to do it".

» So our key-value store only supports put, get, delete.

» All of them are idempotent.

» Instead of more complicated operations like " update if value
equals”, which are not necessarily idempotent.

7/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Generation 0: The Core Functionality

var store = make(map[stringlstring) // global variable
var ErrorNoSuchKey = errors.New("no such key") // sentinel errors

func Put(key string, value string) error {

store[key] = value
return nil
}
func Get(key string) (string, error) {
value, ok := store[key]
if lok {
return "", ErrorNoSuchKey
¥
return value, nil
}

func Delete(key string) error {
delete(store, key)
return nil

}

» Need to provide service endpoints so the store can be
accessed from different processes and servers and languages.

8/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

RESTful Services

9/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Generation 1: The Monolith

» Provide RESTful service endpoints over HT TP protocol.
> REpresentational State Transfer (REST) is a software
architechture for stateless and layerd web services.

» Map HTTP methods and paths into functionality.
» Accessed from network and supported by most languages.
» Simpler than most alternatives like gRPC.

» Build RESTful web services with Go.

» Standard net/http package.
» Third party packages like gorilla/mux for enhanced features.

10/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



A Minimal RESTful Service

package main

import (
"log"
"net/http"
"github.com/gorilla/mux"
)

func helloMuxHandler (w http.ResponseWriter, r *http.Request) {
w.Write([Jbyte("Hello gorilla/mux!\n"))
}

func main() {
r := mux.NewRouter()
r.HandleFunc("/", helloMuxHandler)
log.Fatal(http.ListenAndServe(":8080", r))
}
» Go has the ability to use packages directly from GitHub.
» Need to initialize the Go module to download packages and
their dependencies (more in Project 2).
» Also record the versions for the packages so future package
updates won't break existing projects.
11/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Some Background on Networking and HT TP Protocol

> Services on a host (server) are accessed via a combination of,
» |P address of the host, e.g. 50.19.226.237
» Type of transport layer protocol, e.g. TCP or UDP.
» Port for the specific service, e.g. 8080.
> A protocol defining the meaning of the transfered bytes.
» DNS services translates domain names into IP addresses.
> E.g. “www.iit.edu” to 50.19.226.237
» May help to achieve scalability by rotating server IP addresses
for a single domain name.
» HTTP is a widely used protocol running on TCP transport.
» Supported directly by browsers.
P Access specific resource on a server with URL
protocol://user@host:port/path?query
» port can be omitted for the default: 80 for protocol being
http and 443 for protocol being https
» path may look like a filesystem path, it may or may not map
to an actual file.
» Empty user and ?query may be omitted.

12/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Where is our web service?

r.HandleFunc("/", helloMuxHandler)
log.Fatal(http.ListenAndServe(":8080", r))

» Support a path of / only.

> ":8080" indicates to use port 8080.
» Nothing before : in ":8080" means the service can be
accessed from any IP address of the server.
» A server can have multiple IP addresses.
» Include “localhost”, which is 127.0.0.1, widely used for
development and testing.
» Be careful with firewalls that may block the traffic.

13/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

RESTful API Design

14/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



RESTful API Design

» Use URL path to specify which resource to access.

» Use HTTP methods to specify operations on the resource.
» Usually one of GET, PUT, DELETE, POST.
» May use ?query as well.

» For our key-value store,
» Each key/value pair is specified by a path /v1/{key}, e.g.

/v1/a refers to the pair with key being “a”.
> Note that some part of the book incorrectly states the path to
be /v1/key/{key}.

» HTTP GET method maps to Get, where the value should be
returned in the HTTP response body.

» HTTP PUT method maps to Put, where the value is available
from the HTTP request body.

» HTTP DELETE method maps to Delete.

15/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Implementing GET

func keyValueGetHandler (w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r) // Retrieve "key" from the request
key := vars["key"]

value, err := Get(key) // Get value for key

if errors.Is(err, ErrorNoSuchKey) {
http.Error(w,err.Error(), http.StatusNotFound)
return

}

if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return

}

w.Write([Ibyte(value)) // Write the value to the response
}

func main() {

;:ﬁandleFunc("/vl/{key}", keyValueGetHandler) .Methods ("GET")
> Pay attention to how to retrieve {key} from the path.
» A lot of error handling around Get that we have implemented

in Generation 0.
16/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Implementing PUT

func keyValuePutHandler (w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r) // Retrieve "key" from the request
key := vars["key"]

value, err := io.ReadAll(r.Body) // The request body has our value
defer r.Body.Close()

if err != nil { // If we have an error, report it
http.Error(w, err.Error(), http.StatusInternalServerError)
return

}

err = Put(key, string(value)) // Store the value as a string

if err != nil { // If we have an error, report it
http.Error(w, err.Error(), http.StatusInternalServerError)
return

}

w.WriteHeader (http.StatusCreated) // All good! Return StatusCreated
}

func main() {

r.HandleFunc("/v1/{key}", keyValuePutHandler) .Methods ("PUT")

17/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Concurrency

» It is possible for RESTful requests to arrive at the same time
and most web service frameworks handle them concurrently.
» Functions like keyValuePutHandler and
keyValueGetHandler may be called concurrently from
multiple threads, which will
» Call Get, Put, Delete from multiple threads, which is
» Not safe since all of them access store that is not thread-safe.
» Use a mutex (lock) for simplicity.
» Use sync.RWMutex to enable concurrent read to store.
» Refer to ece573-prj02/kvs/core.go for details.
» Still, only one thread can update store at a time.
» And there will be a lot of lock contentions if a lot of PUT
requests arrive at the same time.

18/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

> Take steps to design and implement RESTful services.

19/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



	Key-Value Store
	RESTful Services
	RESTful API Design

