ECE 473/573
Cloud Computing and Cloud Native Systems
Lecture 08 Transaction Log

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

September 10, 2025

1/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Transaction Log

Implementing a Transaction Log File

2/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Reading Assignment

» This lecture: 5
» Next lecture: 4

3/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Transaction Log

4/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Services as Finite State Machines

» Computations can be modeled as finite state machines (FSMs)
> Networked services like microservices

» React to requests received via the network.
» Update internal data structures and objects as needed.
» Generate responses to be sent via the network.

» Services as FSMs

» State: data model stored in data structures and objects.
Initial state: initial values of variables and objects.
Input: requests

Output: responses

| 2
»
»
» State transitions: function and method calls

5/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Persisting Resource State

» Objective: allow applications and services to start from where
they were, after being shutdown.

» In particular unexpected shutdown due to faults and failures.

» Delegate to another service that will be able to handle
persistence.
» E.g. a database service that supports the data model.
» A good choice in practice but doesn’t answer the fundamental
problem.
> Make use of persistent storage devices
» E.g. hard drives and SSDs where only binary blocks are
supported.
» A more fundamental problem we need to study today.

6/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Persisting Resource State as Binary Blocks

» Option 1: Direct State Storage
» Encode data structures and objects into a binary format that
can be decoded later.
» Intuitive but require efforts to design algorithms for individual
data structures and objects.

» Option 2: Transaction Log

» Store all requests as binary data in the order of their arrival.

» Compute state from the initial state and the stored requests.

» To encode requests is usually simple since they are just names
of functions and methods plus their arguments.

7/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Performance Considerations

> Storage devices are slow.

» Maximum throughput can only be achieved by sequential reads
and writes — storage devices are able to optimize for such cases.

» Random accesses are limited by latency, resulting in much
smaller available throughput.

» Direct State Storage

» Random access to the binary data is required to avoid encoding
and saving the whole state every time there is an update.
» Need to reduce random accesses — not easy.

» Transaction Log

» To store requests as they arrive only requires sequential writes.

» To compute the state requires only sequential reads.

» Nevertheless, to store all requests may require a lot of storage,
and to read and process them may require a lot of time.

8/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Scalability Considerations

» Size and throughput of storage services can be improved by
horizontal scaling.
» Replication improves read throughput by making data available
from multiple servers.
» Sharding improves write throughput by partitioning data into
different servers.

» Sharding is usually not quite difficult.
» For replication,
» Direct State Storage
» Too costly to replicate the whole state frequently.
» How to only replicate updates?
» Transaction Log

» Replicate requests by forwarding them to other servers.
» Each server can then compute the state by themselves.

9/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Resilience Considerations

» Possible faults and failures.

» Hardware failure causing loss of data.
» Power failure in the middle of saving binary data.

» Replication helps to resolve issues of loss of data.
» But replication won't help if it corrupts data.

» For power failures,
» Direct State Storage

P If there is a power failure when updating the binary data, then
it is very difficult to tell what data is changed.

» This may lead to data corruption that cannot be repaired.

» Transaction Log

> Storing new requests only requires to append data and will not
overwrite existing data for past requests.

P If there is power failure, either the new request is stored
successfully or there is some extra data at the end that can be
detected and removed without much efforts — data corruption
can be avoided.

10/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Discussions

11/20

Transaction log provides better scalability and resilience.
Transaction log helps troubleshooting.
» Making it possible to reproduce all system transactions.

Restarting a service using transaction log may take more time
than that using direct state storage.

» Need time to read and process all past requests to compute
the current state.

Practical solutions combine the two options to make
trade-offs.

» As we will discuss for distributed database systems.

ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Implementing a Transaction Log File

12/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Transaction Log File for Key-Value Store

> To support two operations Put, Delete.

>

There is no need to record Get as it doesn't change the state.

» File format

>
>
| 4

>
>
>

Each request is encoded into a line.

Each line contains four fields delimited by tabs.

Sequence number: monotonically increasing to represent the
order of arrival.

Event type: PUT or DELETE

Key

Value: for PUT only.

» Additional considerations.

>
>

13/20

Key/Value cannot contain tabs or newline characters.
A line at the end of the file without a newline character
indicating a corrupted line that should be removed.

ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Transaction Logger

type TransactionLogger interface {
WriteDelete(key string)
WritePut(key, value string)
Err() <-chan error
ReadEvents() (<-chan Event, <-chan error)
Run()

» An interface to support transaction log.

> WriteDelete and WritePut record requests.
> ReadEvents reads past requests when the service restarts.
» Communication through channels: <-chan Event is a channel
of Events where past requests can be read out.
» Reduce memory usage by not reading and storing all past
requests at the same time.
» Run the logger in its own threads with channels.

» Avoid racing conditions from multiple RESTful requests
without using locks.

14/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Implementing File Based Transaction Logger

type FileTransactionLogger struct {
events chan<- Event // Write-only channel for sending events
errors <-chan error // Read-only channel for receiving errors
lastSequence uint64 // The last used event sequence number
file *o0s.File // The location of the transaction log

}

func NewFileTransactionLogger(filename string) (TransactionLogger, error) {
file, err := os.0OpenFile(filename, os.0_RDWR|os.0_APPEND|os.0_CREATE, 0755)

return &FileTransactionLogger{file: file}, nil
}

» Implement FileTransactionLogger to store requests in file
» Lowercase members are private.
» Members not explictly initialized are set to nil or 0.
» Need to implement the 5 methods from the

TransactionLogger interface.
» We will omit error handling to focus on functionalities when
necessary.

15/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Read Past Requests

func (1 *FileTransactionLogger) ReadEvents() (<-chan Event, <-chan error) {

scanner := bufio.NewScanner(l.file) // Create a Scanner for 1l.file
outEvent := make(chan Event) // An unbuffered Event channel
outError := make(chan error, 1) // A buffered error channel

go func() {

var e Event
defer close(outEvent) // Close the channels when the
defer close(outError) // goroutine ends
for scanner.Scan() {
line := scanner.Text()
if err := fmt.Sscanf(line, "%d\t%d\tl)s\tVs",
&e.Sequence, &e.EventType, &e.Key, &e.Value); err != nil {
outError <- fmt.Errorf("input parse error: %w", err)
return
}
1.lastSequence = e.Sequence // Update last used sequence #
outEvent <- e // Send the event along, block if channel is full

}

140)

return outEvent, outError
}

» Send event e to channel outEvent by outEvent <- e.
16/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Write Requests to File

func (1 *FileTransactionLogger) WritePut(key, value string) {
1l.events <- Event{EventType: EventPut, Key: key, Value: valuel}
}
func (1 *FileTransactionLogger) WriteDelete(key string) {
1l.events <- Event{EventType: EventDelete, Key: key}
}
func (1 *FileTransactionLogger) Run() {
1l.events = make(chan Event, 16) // Make an events channel
1l.errors = make(chan error, 1) // Make an errors channel
go func() { // start a goroutine that runs in a single thread
for e := range l.events { // Retrieve the next Event
1.lastSequence++ // Increment sequence number
_, err := fmt.Fprintf(1l.file, "%d\t%d\t%s\t/%s\n",
1.lastSequence, e.EventType, e.Key, e.Value)

}
130
}
» Thread confinement: multiple threads may call WritePut and
WriteDelete but only a single thread will handle them.
» Synchronization via a channel without a lock.

17/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Initialization

var logger TransactionLogger
func initializeTransactionLog() error {
logger, err := NewFileTransactionLogger ("transaction.log")

events, errors := logger.ReadEvents()
e, ok := Event{}, true
for ok && err == nil {
select { // use select to read from multiple channels
case err, ok = <-errors: // Retrieve any errors
case e, ok = <-events:
switch e.EventType {
case EventDelete: // Got a DELETE event!
err = Delete(e.Key)
case EventPut: // Got a PUT event!
err = Put(e.Key, e.Value)
}
}
}
logger.Run()
return err
}
func main() {
err := initializeTransactionLog()

18/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Recording PUT Requests

func keyValuePutHandler(w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r)
key := vars["key"]
value, err := ioutil.ReadAll(r.Body)
defer r.Body.Close()

err = Put(key, string(value))

logger .WritePut(key, string(value))
w.WriteHeader (http.StatusCreated)
log.Printf ("PUT key=Ys value=Ys\n", key, string(value))

» DELETE is recorded in a similar way.

19/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Summary

» Use transaction logs to store states indirectly for better
scalability and resilience.

20/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

	Transaction Log
	Implementing a Transaction Log File

