ECE 473/573

Cloud Computing and Cloud Native Systems
Lecture 09 Cloud Native Patterns

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

September 15, 2025

1/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Cloud Native Patterns

The Context Package

Stability Patterns

2/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Reading Assignment

» This lecture: 4
» Next lecture: 4

3/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Cloud Native Patterns

4/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Fallacies of Distributed Computing

The network is reliable
Latency is zero

Bandwidth is infinite

The network is secure
Topology doesn’t change
There is one administrator
Transport cost is zero

The network is homogeneous

VVVyVvVVYVYyVYY

Services are reliable

5/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Cloud Native Patterns

» Patterns are proven development paradigms.
» Learn from professionals.
» Facilitate communication between professionals.
» Cloud native patterns help to address the fallacies of
distributed computing and mitigate them.
» Explore unique and novel Go implementations.
» Combining classical design patterns with goroutines and
channels.

6/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

The Context Package

7/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

The Context Package

» Introduced in Go 1.7

» Provides a unified framework for carrying deadlines,
cancellation signals, and request-scoped values between
function calls and threads.

» Via the context.Context interface.

8/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

The Context Interface

type Context interface {
Done() <-chan struct{}
Err() error
Deadline() (deadline time.Time, ok bool)
Value(key interface{}) interface{}

}
» A context could refer to a request from a user.
» Done returns a channel indicating if the context is cancelled.

» The channel is closed when the context is cancelled.
» The channel is not used to communicate any data (struct{}).
» Err indicates the reason of cancellation.

» Deadline returns the deadline of the context if there is any.

» A function could choose to terminate if it decides there is not
enough time left.

> Value allows to access data associated with this context
organized as key-value pairs.

> E.g. the identity of the user

9/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

What Context Can Do for You

» Consider a RESTful request that need to be handled.
» Similar to our simple key-value store example, this request will
go through multiple functions and threads, or even another
service, before a response can be generated.

» What if the request is cancelled during the process?
» Completing the process but not returning the response will

work but be a waste.
» For efficiency, need a mechanism to communicate to functions

and threads that the request is cancelled.

» Context works as a mechanism to notify so.
» Functions and threads can check if Done returns a closed
channel and terminate without consuming additional resources.
» Context has to be thread safe for such purpose — be careful
with the Value method to not modify what it returns.

10/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Building Context

func Background() Context
func TODO() Context

// manually cancel via CancelFunc
func WithCancel(parent Context) (Context, CancelFunc)

// automatically cancel after duration or at deadline,

// or manually cancel via CancelFunc

func WithTimeout(parent Context, time.Duration) (Context, CancelFunc)
func WithDeadline(parent Context, time.Time) (Context, CancelFunc)

// create or update data as key/value pairs
func WithValue(parent Context, key, val interface{}) Context
» Start with the empty context either from Background or TODO
» Add cancellations, deadlines, and data by calling the other
functions.
» This is also known as the Decorator pattern.
» Widely used to dynamically change object behaviors by
introducing new objects without modifying existing objects.
> So that objects can be shared by goroutines (and threads)
without using locks.
11/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

An Example

// ReadObject need to follow ctx correctly,
// and it may create additional contexts for any function it uses.
func ReadObject(ctx context.Context, out chan<- Value) error {

dctx, cancel := context.WithTimeout(ctx, time.Second * 10)
defer cancel() // always cancel at the end
res, err := RequestObject(dctx) // set a timeout of 10 seconds
if err != nil { // if RequestObject fails or times out

return err
}
for { // it takes time to send response back

select {

case out <- res: // receive from res; send to out
case <-ctx.Done(): // if ctx is cancelled somewhere,
return ctx.Err() // ReadObject should terminate immediately
}
}
} // adapted from textbook example by giving meaningful names
> ReadObject need to send the object to out.
P |t calls RequestObject to obtain a channel to receive it.
» However, RequestObject will need to obtain the object from
another service, which may be too busy sometimes.
» ReadObject sets a timeout for RequestObject.
12/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Stability Patterns

13/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Retry

» Errors and failures are always there.
» Some of them are transient due to temporary conditions.

» Transient faults typically resolve themselves after a bit of time.
> Retry: retrying a failed operation that is most likely transient.

» Participants
> Effector: the original function interacting with the service.
» Retry: a closure with the same function signature as Effector
that retries Effector if failed.
» Retry works as a decorator of Effector to change the behavior.
» Use this pattern instead of adding a loop (and logging) to any
function you would like to retry.

14/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Retry Example

type Effector func(context.Context) (string, error)
func Retry(effector Effector, retries int, delay time.Duration) Effector {
return func(ctx context.Context) (string, error) {

for r := 0; ; r++ {
response, err := effector(ctx)
if err == nil || r >= retries {
return response, err
¥
log.Printf ("Attempt d failed; retrying in %v", r + 1, delay)
select {

case <-time.After(delay):
case <-ctx.Done():
return "", ctx.Err()

» Decorate effector by using an anonymous function.

> Use select to wait for delay and cancellation at the same
time — whichever comes first will be handled.

15/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Retry Example (Cont.)

func main() {
// a service that fails frequently
count := 0
mockService := func(ctx context.Context) (string, error) {
count++
if count%3 !'= 0 {
return "", errors.New("temporary failure")

}

return "success!", nil
¥
// up to 5 retries with 1s delay
retryMockService := Retry(mockService, 5, time.Second)
result, err := retryMockService(context.Background())
if err != nil {

fmt.Println("Final error:", err)

return
¥

fmt.Println("Got result:", result)

16/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Circuit Breaker

» Not all faults are transient.
» Misconfiguration, databases crash, etc.
» Simply retry failed requests are not helpful.
» Not addressing it may cause worse issues.
> Services return nonsense as others fail.
> Services fall into a crash/restart death spiral.
» Waste resources and obscure source of original failure.
» Circuit breaker: to degrade service function in response to a
possible fault in order to prevent cascading failures.
» Detect failures and temporarily stop retries while providing
meaningful error messages.
» Resume retries after certain duration.
» Participants

» Circuit: the original function interacting with the service.
» Breaker: a closure as a decorator of Curcuit with desired
failure handling logic.

17/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Circuit Breaker Example

type Circuit func(context.Context) (string, error)
func Breaker(circuit Circuit) Circuit {
var consecutiveFailures int = 0
var lastAttempt = time.Now()
return func(ctx context.Context) (string, error) {
if consecutiveFailures >= 5 {
shouldRetryAt := lastAttempt.Add(time.Second * 10)
if !time.Now() .After(shouldRetryAt) {
return "", errors.New("service unreachable")
}
}
response, err := circuit(ctx) // Issue request proper
lastAttempt = time.Now() // Record time of attempt
if err != nil { // Circuit returned an error,
consecutiveFailures++ // so we count the failure
return response, err // and return
}
consecutiveFailures = 0 // Reset failures counter
return response, nil
} // simplified from textbook example by removing
} // exponential backoff and multi-thread supports

> A circuit breaker to prevent futile retries: retries after 5

consecutive fails need to be 10 seconds apart.
18/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Debounce

> External inputs can be very unpredictable.
» Users may spam-click buttons because of slow response.
» Reacting with every such input further slows system down.
» Not processing some requests is better than not processing
anything at all.
» Debounce: limits the frequency of actual function calls so that
only the first or the last go through.
» Participants

» Circuit: the original function to regulate
» Debounce: a closure as a decorator of Circuit that calls only
once but reuses results for others.

19/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Debounce Example

type Circuit func(context.Context) (string, error)
func DebounceFirst(circuit Circuit, d time.Duration) Circuit {
var threshold time.Time
var result string
var err error
var m sync.Mutex
return func(ctx context.Context) (string, error) {
m.Lock() // support calling DebounceFirst from multiple goroutines
defer func() {
threshold = time.Now() .Add(d)
m.Unlock()
}O
if time.Now() .Before(threshold) {
return result, err
}
result, err = circuit(ctx)
return result, err

» Record the result and reuse it for consecutive calls within a
short period of time.

» What about DebouncelLast?
20/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Throttle

» Services may limit maximum number of calls per unit of time

» To address unexpected behavior from external inputs while still
allow many requests to go through.

» To preserve resources for fairness among many clients.

» Throttle: limits the frequency of actual function calls to

match system requirements.

» Participants

> Effector: the original function to regulate

» Throttle: a closure as a decorator of Effector to limit rate of
calls.

21/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Throttle Example

type Effector func(context.Context) (string, error)
func Throttle(e Effector, max uint, refill uint, d time.Duration) Effector {
var tokens = max
var once sync.Once
return func(ctx context.Context) (string, error) {
// handle cancellation
if ctx.Err() != nil {
return "", ctx.Err()
}
// setup a goroutine to refill tokens
once.Do(func() {

b

if tokens <= 0 {
return "", fmt.Errorf("too many calls")
}
tokens--
return e(ctx)
}
}

» Return an error for calls beyond a predefined rate.

22/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Throttle Example (Cont.)

// setup a goroutine to refill tokens
once.Do(func() {
ticker := time.NewTicker(d)
go func() {
defer ticker.Stop()
for {
select {
case <-ctx.Done(): // handle cancellation
return
case <-ticker.C: // d time has passed
t := tokens + refill
if t > max {
t = max
}
tokens = t
¥
}
+O
1))

» Allow to accumulate unused tokens up to a maximum.

23/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Summary

» Distributed computing is very different than simply connecting
services via networks.

» Learn proven paradigms for distributed computing via cloud
native patterns.

24/24 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

	Cloud Native Patterns
	The Context Package
	Stability Patterns

