
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 09 Cloud Native Patterns

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

September 15, 2025

1/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Cloud Native Patterns

The Context Package

Stability Patterns

2/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Reading Assignment

▶ This lecture: 4

▶ Next lecture: 4

3/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Cloud Native Patterns

The Context Package

Stability Patterns

4/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Fallacies of Distributed Computing

▶ The network is reliable

▶ Latency is zero

▶ Bandwidth is infinite

▶ The network is secure

▶ Topology doesn’t change

▶ There is one administrator

▶ Transport cost is zero

▶ The network is homogeneous

▶ Services are reliable

5/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Cloud Native Patterns

▶ Patterns are proven development paradigms.
▶ Learn from professionals.
▶ Facilitate communication between professionals.

▶ Cloud native patterns help to address the fallacies of
distributed computing and mitigate them.

▶ Explore unique and novel Go implementations.
▶ Combining classical design patterns with goroutines and

channels.

6/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Cloud Native Patterns

The Context Package

Stability Patterns

7/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

The Context Package

▶ Introduced in Go 1.7

▶ Provides a unified framework for carrying deadlines,
cancellation signals, and request-scoped values between
function calls and threads.

▶ Via the context.Context interface.

8/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

The Context Interface

type Context interface {

Done() <-chan struct{}

Err() error

Deadline() (deadline time.Time, ok bool)

Value(key interface{}) interface{}

}

▶ A context could refer to a request from a user.
▶ Done returns a channel indicating if the context is cancelled.

▶ The channel is closed when the context is cancelled.
▶ The channel is not used to communicate any data (struct{}).
▶ Err indicates the reason of cancellation.

▶ Deadline returns the deadline of the context if there is any.
▶ A function could choose to terminate if it decides there is not

enough time left.

▶ Value allows to access data associated with this context
organized as key-value pairs.
▶ E.g. the identity of the user

9/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

What Context Can Do for You

▶ Consider a RESTful request that need to be handled.
▶ Similar to our simple key-value store example, this request will

go through multiple functions and threads, or even another
service, before a response can be generated.

▶ What if the request is cancelled during the process?
▶ Completing the process but not returning the response will

work but be a waste.
▶ For efficiency, need a mechanism to communicate to functions

and threads that the request is cancelled.

▶ Context works as a mechanism to notify so.
▶ Functions and threads can check if Done returns a closed

channel and terminate without consuming additional resources.
▶ Context has to be thread safe for such purpose – be careful

with the Value method to not modify what it returns.

10/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Building Context

func Background() Context

func TODO() Context

// manually cancel via CancelFunc

func WithCancel(parent Context) (Context, CancelFunc)

// automatically cancel after duration or at deadline,

// or manually cancel via CancelFunc

func WithTimeout(parent Context, time.Duration) (Context, CancelFunc)

func WithDeadline(parent Context, time.Time) (Context, CancelFunc)

// create or update data as key/value pairs

func WithValue(parent Context, key, val interface{}) Context

▶ Start with the empty context either from Background or TODO
▶ Add cancellations, deadlines, and data by calling the other

functions.
▶ This is also known as the Decorator pattern.

▶ Widely used to dynamically change object behaviors by
introducing new objects without modifying existing objects.

▶ So that objects can be shared by goroutines (and threads)
without using locks.

11/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

An Example

// ReadObject need to follow ctx correctly,

// and it may create additional contexts for any function it uses.

func ReadObject(ctx context.Context, out chan<- Value) error {

dctx, cancel := context.WithTimeout(ctx, time.Second * 10)

defer cancel() // always cancel at the end

res, err := RequestObject(dctx) // set a timeout of 10 seconds

if err != nil { // if RequestObject fails or times out

return err

}

for { // it takes time to send response back

select {

case out <- res: // receive from res; send to out

case <-ctx.Done(): // if ctx is cancelled somewhere,

return ctx.Err() // ReadObject should terminate immediately

}

}

} // adapted from textbook example by giving meaningful names

▶ ReadObject need to send the object to out.
▶ It calls RequestObject to obtain a channel to receive it.

▶ However, RequestObject will need to obtain the object from
another service, which may be too busy sometimes.
▶ ReadObject sets a timeout for RequestObject.

12/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Cloud Native Patterns

The Context Package

Stability Patterns

13/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Retry

▶ Errors and failures are always there.
▶ Some of them are transient due to temporary conditions.

▶ Transient faults typically resolve themselves after a bit of time.

▶ Retry: retrying a failed operation that is most likely transient.
▶ Participants

▶ Effector: the original function interacting with the service.
▶ Retry: a closure with the same function signature as Effector

that retries Effector if failed.
▶ Retry works as a decorator of Effector to change the behavior.

▶ Use this pattern instead of adding a loop (and logging) to any
function you would like to retry.

14/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Retry Example

type Effector func(context.Context) (string, error)

func Retry(effector Effector, retries int, delay time.Duration) Effector {

return func(ctx context.Context) (string, error) {

for r := 0; ; r++ {

response, err := effector(ctx)

if err == nil || r >= retries {

return response, err

}

log.Printf("Attempt %d failed; retrying in %v", r + 1, delay)

select {

case <-time.After(delay):

case <-ctx.Done():

return "", ctx.Err()

}

}

}

}

▶ Decorate effector by using an anonymous function.

▶ Use select to wait for delay and cancellation at the same
time – whichever comes first will be handled.

15/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Retry Example (Cont.)

func main() {

// a service that fails frequently

count := 0

mockService := func(ctx context.Context) (string, error) {

count++

if count%3 != 0 {

return "", errors.New("temporary failure")

}

return "success!", nil

}

// up to 5 retries with 1s delay

retryMockService := Retry(mockService, 5, time.Second)

result, err := retryMockService(context.Background())

if err != nil {

fmt.Println("Final error:", err)

return

}

fmt.Println("Got result:", result)

}

16/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Circuit Breaker

▶ Not all faults are transient.
▶ Misconfiguration, databases crash, etc.
▶ Simply retry failed requests are not helpful.

▶ Not addressing it may cause worse issues.
▶ Services return nonsense as others fail.
▶ Services fall into a crash/restart death spiral.
▶ Waste resources and obscure source of original failure.

▶ Circuit breaker: to degrade service function in response to a
possible fault in order to prevent cascading failures.
▶ Detect failures and temporarily stop retries while providing

meaningful error messages.
▶ Resume retries after certain duration.

▶ Participants
▶ Circuit: the original function interacting with the service.
▶ Breaker: a closure as a decorator of Curcuit with desired

failure handling logic.

17/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Circuit Breaker Example

type Circuit func(context.Context) (string, error)

func Breaker(circuit Circuit) Circuit {

var consecutiveFailures int = 0

var lastAttempt = time.Now()

return func(ctx context.Context) (string, error) {

if consecutiveFailures >= 5 {

shouldRetryAt := lastAttempt.Add(time.Second * 10)

if !time.Now().After(shouldRetryAt) {

return "", errors.New("service unreachable")

}

}

response, err := circuit(ctx) // Issue request proper

lastAttempt = time.Now() // Record time of attempt

if err != nil { // Circuit returned an error,

consecutiveFailures++ // so we count the failure

return response, err // and return

}

consecutiveFailures = 0 // Reset failures counter

return response, nil

} // simplified from textbook example by removing

} // exponential backoff and multi-thread supports

▶ A circuit breaker to prevent futile retries: retries after 5
consecutive fails need to be 10 seconds apart.

18/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Debounce

▶ External inputs can be very unpredictable.
▶ Users may spam-click buttons because of slow response.
▶ Reacting with every such input further slows system down.
▶ Not processing some requests is better than not processing

anything at all.

▶ Debounce: limits the frequency of actual function calls so that
only the first or the last go through.

▶ Participants
▶ Circuit: the original function to regulate
▶ Debounce: a closure as a decorator of Circuit that calls only

once but reuses results for others.

19/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Debounce Example

type Circuit func(context.Context) (string, error)

func DebounceFirst(circuit Circuit, d time.Duration) Circuit {

var threshold time.Time

var result string

var err error

var m sync.Mutex

return func(ctx context.Context) (string, error) {

m.Lock() // support calling DebounceFirst from multiple goroutines

defer func() {

threshold = time.Now().Add(d)

m.Unlock()

}()

if time.Now().Before(threshold) {

return result, err

}

result, err = circuit(ctx)

return result, err

}

}

▶ Record the result and reuse it for consecutive calls within a
short period of time.

▶ What about DebounceLast?
20/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Throttle

▶ Services may limit maximum number of calls per unit of time
▶ To address unexpected behavior from external inputs while still

allow many requests to go through.
▶ To preserve resources for fairness among many clients.

▶ Throttle: limits the frequency of actual function calls to
match system requirements.

▶ Participants
▶ Effector: the original function to regulate
▶ Throttle: a closure as a decorator of Effector to limit rate of

calls.

21/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Throttle Example

type Effector func(context.Context) (string, error)

func Throttle(e Effector, max uint, refill uint, d time.Duration) Effector {

var tokens = max

var once sync.Once

return func(ctx context.Context) (string, error) {

// handle cancellation

if ctx.Err() != nil {

return "", ctx.Err()

}

// setup a goroutine to refill tokens

once.Do(func() {

...

})

if tokens <= 0 {

return "", fmt.Errorf("too many calls")

}

tokens--

return e(ctx)

}

}

▶ Return an error for calls beyond a predefined rate.

22/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Throttle Example (Cont.)

// setup a goroutine to refill tokens

once.Do(func() {

ticker := time.NewTicker(d)

go func() {

defer ticker.Stop()

for {

select {

case <-ctx.Done(): // handle cancellation

return

case <-ticker.C: // d time has passed

t := tokens + refill

if t > max {

t = max

}

tokens = t

}

}

}()

})

▶ Allow to accumulate unused tokens up to a maximum.

23/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Summary

▶ Distributed computing is very different than simply connecting
services via networks.

▶ Learn proven paradigms for distributed computing via cloud
native patterns.

24/24 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

	Cloud Native Patterns
	The Context Package
	Stability Patterns

