ECE 473/573
Cloud Computing and Cloud Native Systems
Lecture 10 Concurrency Patterns

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

September 17, 2025

1/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Concurrency Patterns

2/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

» This lecture: 4

> Next lecture: Database systems

3/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Concurrency Patterns

4/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Fan-Out

» To utilize multiple CPU cores to process large amount of data,
multiple worker goroutines are needed.

» How to distribute jobs to them?

» Fan-out: distribute jobs (as messages) from an input channel
to multiple output channels.
» Jobs may take different amount time to complete so it is best
for the workers to retrieve them when they are ready.
» While workers may compete on the input channel directly,
output channels can use buffers that are otherwise not
available on the input channel.

» Participants

» Source: input channel.

» Destinations: output channels of the same type as input.

» Split: take Source and return Destinations, output any from
Source to Destination.

5/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Split Implementation

func Split(source <-chan int, n int) [J<-chan int {
dests := make([]<-chan int, 0) // Create the dests slice
for i := 0; i < n; i++ { // Create n destination channels
ch := make(chan int)
dests = append(dests, ch)
go func() { // Each channel gets a dedicated
defer close(ch) // goroutine that competes for reads
for val := range source {
ch <- val
}
r0O
¥
return dests

}

» The Split function can be further customized to preprocess
data before sending them to individual channels.

6/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Fan-Out Example

func main() {
source := make(chan int) // The input channel
dests := Split(source, 5) // Retrieve 5 output channels
go func() { // Send the number 1..10 to source

for i := 1; i <= 10; i++ { // and close it when we’re done
source <- i
}
close(source)
140)

var wg sync.WaitGroup // Use WaitGroup to wait until
wg.Add(len(dests)) // the output channels all close
for i, ch := range dests {
go func(i int, d <-chan int) {
defer wg.Done()

for val := range d {
fmt.Printf ("#/d got %d\n", i, val)
}
}(, ch)
}
wg.Wait ()
}
> sync.WaitGroup manages a count of workers that are still
running.

7/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Fan-In

» What if workers need to send back results?
» Via channels for both data and completion.
» select allows to wait on a predefined list of channels but not
an array of channels.
» Fan-in: multiplex input channels onto one output channel.
» Workers cannot write to the output channel directly as they
need their own input channels to signal completion.
» Participants
» Sources: inputs channels of the same type.
» Destination: output channel with the same type as Sources.
» Funnel: take Sources and return Destination, output any from
Sources to Destination.

8/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Funnel Implementation

func Funnel(sources ...<-chan int) <-chan int {
dest := make(chan int) // The shared output channel
var wg sync.WaitGroup // Used to automatically close dest
// when all sources are closed
wg.Add(len(sources)) // Set size of the WaitGroup
for _, ch := range sources { // Start a goroutine for each source
go func(c <-chan int) {
defer wg.Done() // Notify WaitGroup when c closes

for n := range c {
dest <- n
}
}(ch)

}

go func() { // Start a goroutine to close dest
wg.Wait() // after all sources close
close(dest)

130

return dest

» sync.WaitGroup manages a count of source channels that
are not closed yet.

9/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Fan-In Example

func main() {

sources := make([]<-chan int, 0) // Create an empty channel slice
for i := 0; i < 3; i++ {
ch := make(chan int)

sources = append(sources, ch) // Create a channel; add to sources
go func() { // Run a toy goroutine for each
defer close(ch) // Close ch when the routine ends

for i := 1; i <= 5; i++ {
ch <- i
time.Sleep(time.Second)
}
}O
¥
dest := Funnel(sources...)

for d := range dest {
fmt.Println(d)
}
}

» No need to use sync.WaitGroup in main.

10/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Future

11/15

Start a job in background and retrieve result at a later time.

» Fan-out and fan-in are not simple enough.

Start jobs in background following certain order and process
their results in the same order.

» Fan-out and fan-in won't help.

A single channel can be used to transmit the result, but

» Result can be retrieved only once.

» Errors are not handled.

» Additional features like use of Context need further support.
Future: provide a placeholder for the result that can be waited
for and retrieved.

» As supported by most languages.

Participants
» Future: the interface for the eventual result.
» SlowFunction: a wrapper function starts a function and returns
a Future to retrieve its result later.
» InnerFuture: implementation of the Future interface.

ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Future Example

func main() {
ctx := context.Background()
future := SlowFunction(ctx)
res, err := future.Result()
if err != nil {
fmt .Println("error:", err)
return
}
fmt .Println(res)

» The code looks more “sequential”.

» The details of goroutines and channels are hidden.
» The code becomes more readable since we prefer to read
sequential programs.

12/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Future Implementation

func SlowFunction(ctx context.Context) Future {

resCh := make(chan string)
errCh := make(chan error)
go func() {

defer close(resCh) // don’t forget to close them
defer close(errCh)
select {
case <-time.After(time.Second * 2):
resCh <- "I slept for 2 seconds"
errCh <- nil
case <-ctx.Done():
resCh <- ""
errCh <- ctx.Err()
}
30
return &InnerFuture{resCh: resCh, errCh: errCh}

}

13/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Future Implementation (Cont.)

type InnerFuture struct {
once sync.0Once
wg sync.WaitGroup
res string
err error
resCh <-chan string
errCh <-chan error
}
func (f *InnerFuture) Result() (string, error) {
f.once.Do(func() {
f.wg.Add (1)
defer f.wg.Done()
f.res = <-f.resCh
f.err = <-f.errCh
1))
f.wg.Wait ()
return f.res, f.err

}
> Allow to retrieve the result multiple times via Result.
» Could from different goroutines.
» The result and error are only read once from the channels as
controlled by sync.WaitGroup.
14/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IT



Summary

» Learn how to program more than one cores (and servers) from
concurrency patterns.

15/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



	Concurrency Patterns

