
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 10 Concurrency Patterns

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

September 17, 2025

1/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Concurrency Patterns

2/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 4

▶ Next lecture: Database systems

3/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Concurrency Patterns

4/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Fan-Out

▶ To utilize multiple CPU cores to process large amount of data,
multiple worker goroutines are needed.
▶ How to distribute jobs to them?

▶ Fan-out: distribute jobs (as messages) from an input channel
to multiple output channels.
▶ Jobs may take different amount time to complete so it is best

for the workers to retrieve them when they are ready.
▶ While workers may compete on the input channel directly,

output channels can use buffers that are otherwise not
available on the input channel.

▶ Participants
▶ Source: input channel.
▶ Destinations: output channels of the same type as input.
▶ Split: take Source and return Destinations, output any from

Source to Destination.

5/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Split Implementation

func Split(source <-chan int, n int) []<-chan int {

dests := make([]<-chan int, 0) // Create the dests slice

for i := 0; i < n; i++ { // Create n destination channels

ch := make(chan int)

dests = append(dests, ch)

go func() { // Each channel gets a dedicated

defer close(ch) // goroutine that competes for reads

for val := range source {

ch <- val

}

}()

}

return dests

}

▶ The Split function can be further customized to preprocess
data before sending them to individual channels.

6/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Fan-Out Example

func main() {

source := make(chan int) // The input channel

dests := Split(source, 5) // Retrieve 5 output channels

go func() { // Send the number 1..10 to source

for i := 1; i <= 10; i++ { // and close it when we’re done

source <- i

}

close(source)

}()

var wg sync.WaitGroup // Use WaitGroup to wait until

wg.Add(len(dests)) // the output channels all close

for i, ch := range dests {

go func(i int, d <-chan int) {

defer wg.Done()

for val := range d {

fmt.Printf("#%d got %d\n", i, val)

}

}(i, ch)

}

wg.Wait()

}

▶ sync.WaitGroup manages a count of workers that are still
running.

7/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Fan-In

▶ What if workers need to send back results?
▶ Via channels for both data and completion.
▶ select allows to wait on a predefined list of channels but not

an array of channels.

▶ Fan-in: multiplex input channels onto one output channel.
▶ Workers cannot write to the output channel directly as they

need their own input channels to signal completion.

▶ Participants
▶ Sources: inputs channels of the same type.
▶ Destination: output channel with the same type as Sources.
▶ Funnel: take Sources and return Destination, output any from

Sources to Destination.

8/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Funnel Implementation

func Funnel(sources ...<-chan int) <-chan int {

dest := make(chan int) // The shared output channel

var wg sync.WaitGroup // Used to automatically close dest

// when all sources are closed

wg.Add(len(sources)) // Set size of the WaitGroup

for _, ch := range sources { // Start a goroutine for each source

go func(c <-chan int) {

defer wg.Done() // Notify WaitGroup when c closes

for n := range c {

dest <- n

}

}(ch)

}

go func() { // Start a goroutine to close dest

wg.Wait() // after all sources close

close(dest)

}()

return dest

}

▶ sync.WaitGroup manages a count of source channels that
are not closed yet.

9/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Fan-In Example

func main() {

sources := make([]<-chan int, 0) // Create an empty channel slice

for i := 0; i < 3; i++ {

ch := make(chan int)

sources = append(sources, ch) // Create a channel; add to sources

go func() { // Run a toy goroutine for each

defer close(ch) // Close ch when the routine ends

for i := 1; i <= 5; i++ {

ch <- i

time.Sleep(time.Second)

}

}()

}

dest := Funnel(sources...)

for d := range dest {

fmt.Println(d)

}

}

▶ No need to use sync.WaitGroup in main.

10/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Future

▶ Start a job in background and retrieve result at a later time.
▶ Fan-out and fan-in are not simple enough.

▶ Start jobs in background following certain order and process
their results in the same order.
▶ Fan-out and fan-in won’t help.

▶ A single channel can be used to transmit the result, but
▶ Result can be retrieved only once.
▶ Errors are not handled.
▶ Additional features like use of Context need further support.

▶ Future: provide a placeholder for the result that can be waited
for and retrieved.
▶ As supported by most languages.

▶ Participants
▶ Future: the interface for the eventual result.
▶ SlowFunction: a wrapper function starts a function and returns

a Future to retrieve its result later.
▶ InnerFuture: implementation of the Future interface.

11/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Future Example

func main() {

ctx := context.Background()

future := SlowFunction(ctx)

res, err := future.Result()

if err != nil {

fmt.Println("error:", err)

return

}

fmt.Println(res)

}

▶ The code looks more “sequential”.
▶ The details of goroutines and channels are hidden.
▶ The code becomes more readable since we prefer to read

sequential programs.

12/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Future Implementation

func SlowFunction(ctx context.Context) Future {

resCh := make(chan string)

errCh := make(chan error)

go func() {

defer close(resCh) // don’t forget to close them

defer close(errCh)

select {

case <-time.After(time.Second * 2):

resCh <- "I slept for 2 seconds"

errCh <- nil

case <-ctx.Done():

resCh <- ""

errCh <- ctx.Err()

}

}()

return &InnerFuture{resCh: resCh, errCh: errCh}

}

13/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Future Implementation (Cont.)

type InnerFuture struct {

once sync.Once

wg sync.WaitGroup

res string

err error

resCh <-chan string

errCh <-chan error

}

func (f *InnerFuture) Result() (string, error) {

f.once.Do(func() {

f.wg.Add(1)

defer f.wg.Done()

f.res = <-f.resCh

f.err = <-f.errCh

})

f.wg.Wait()

return f.res, f.err

}

▶ Allow to retrieve the result multiple times via Result.
▶ Could from different goroutines.

▶ The result and error are only read once from the channels as
controlled by sync.WaitGroup.

14/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Learn how to program more than one cores (and servers) from
concurrency patterns.

15/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Concurrency Patterns

