ECE 473/573
Cloud Computing and Cloud Native Systems
Lecture 11 Database Systems

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

September 22, 2025

1/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Cloud Storage

Relational Database

Relational Algebra and SQL

2/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Reading Assignment

» This lecture: Database systems
> Next two lectures: Distributed database systems

» Cassandra - A Decentralized Structured Storage System
https://www.cs.cornell.edu/projects/ladis2009/
papers/lakshman-1adis2009.pdf

» Spanner: Google's Globally-Distributed Database
http://static.googleusercontent.com/external _
content/untrusted_dlcp/research.google.com/en/
/archive/spanner-osdi2012.pdf

3/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

https://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf
https://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//archive/spanner-osdi2012.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//archive/spanner-osdi2012.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//archive/spanner-osdi2012.pdf

Outline

Cloud Storage

4/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Cloud Storage

> A fundamental component of cloud computing.
P Persist state of microservices and applications.
» Store intermediate data to facilitate communication and fault
resilience.
> Metrics
» Size
» Performance: throughput and latency
» Availability and reliability
» |everage scalability to improve all of them.
» Different types of cloud storage may have different trade-offs.

» Block storage and file systems
» Object storage
» Database systems

5/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Block Storage and File Systems

» Block storage provides byte blocks of fixed size that can be
accessed randomly.
» E.g. hard drives and solid-state drives.
» Available locally or through a dedicated network (SAN) for
high throughput and low latency.
» File systems built on top of block storage provide support to
» Organize data as files and directories
» Share files over network
» Checksum, versioning, and redundancy
» Security features like permission and encryption
» Not scalable

» Strong tie to the underlying hardware for performance
» Exclusive access is required to update a block.

6/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Object Storage

> Manage data as objects that must be modified as a whole.
P Accessed via networked services.
» Use a key as identifier instead of a name.
» Need other mechanisms to support hierarchy.
» Highly scalable
> Able to utilize physical storage from many servers via
networked services.
» Many objects are not modified after creation — easy to
maintain multiple copies of the same object.
» Optimize for different access patterns
» Backups that are mostly write-once without read.
» Intermediate data that require only sequential access.
» Media files that are mostly read-only but need to be read
frequently from all over the world.

7/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Database Systems

» Provide rich accesses to highly structured data beyond
read /write.

» Relational (SQL) database
» Very strong guarantee on data consistency — a must to
manage data that need to be consistent like payments.
» Mature and well-understood.
» Not scalable — need to maintain a lot of internal states.

» NoSQL databases
» High scalability by giving up some part of the consistency
guarantees of SQL databases.
» Different NoSQL databases may explore different trade-offs to
favorite different applications, making it tricky to pick up the
right one to meet the requirement.

8/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Relational Database

9/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Relational Database

» A classical approach for data management.
» Restrict functionality to what can be expressed in relational
algebra, usually captured by the SQL language.
» Provide ACID guarantee on database operations including data
persistency and concurrent access.
» Usually run as a stand-alone service that clients can access
locally or remotely.
» Via management tools, or
» Via APIs that are available from most programming languages.

10/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

ACID Guarantee

» Database updates are grouped into transactions to support
application logic.
» E.g. if Alice need to transfer $100 to Bob, the transaction
need to deduct $100 from Alice’s account and add $100 to
Bob's account.

> Atomicity: either the transaction succeeds or fails as a whole.

» |t is not allowed to deduct $100 from Alice's account while not
changing Bob's account.

» Consistency: database remains valid after transactions are
executed.

» Transactions are committed if succeed. Later transactions will
see the changes.

» Failed transactions should not change the database.

» Transactions, if committed, should execute correctly, e.g. it is
not allowed to deduct $100 from Alice's account while adding
$50 to Bob's account, and not allowed for Alice to have a
negative balance.

11/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

ACID Guarantee (Cont.)

> [solation: transactions are executed as if sequentially.

» Actual implementations may execute transactions concurrently
to achieve better performance.

» However, the outcome should be the same as if the
transactions are executed one after another — note that the
order is not specified.

» E.g. if we assume Alice initialy has $0 in her account and that
at the same time Alice transfers $100 to Bob, Carol transfers
$200 to Alice, then both are possible that the transaction from
Alice to Bob succeeds or fails.

» Durability: committed transactions survive system failures.

» Usually by storing data on a drive.
» To the extent that the drive won't fail.

» It is quite challenge to achieve ACID at the same time.

» E.g. what if there is a power outage when the database is
about to commit one transaction by writing data to the disks?

12/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Data Models in Relational Database

13/21

Data are organized into tables or relations.

Each table consists of many rows or tuples of data.

Each row consists of many columns or attributes or fields

» Rows in the same table should have the same columns.
Each row should have a special column called the key or the

primary key that is unique among the rows in the same table.

» Allow one to quickly locate the row given its key.
» Additionally to support a range query of keys.
Each column of a row is usually of an elementary data type.

» That can be compared and operated on.
» Opaque binary blobs are also supported by many database
systems to store data like images.

ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Relational Algebra and SQL

14/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

SQL Query

SELECT users.id, SUM(orders.total) total_spending,
FROM users JOIN orders ON (users.id=orders.buyer_id)
WHERE orders.year=2023

GROUP BY users.id

ORDER BY total_spending DESC;

» SQL queries start with the SELECT clause.
» Each query will return rows of data.

» Each row may contain data from multiple tables.

» Columns are specified in the SELECT clause.

» E.g. two columns users.id and total_spending are
generated here.

15/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Data Source

SELECT ...
FROM users JOIN orders ON (users.id=orders.buyer_id)

» The FROM clause specifies data to query from.
» You may query data from a single table, or

» From multiple tables by joining them together.

» So that relevant data can be retrieved from multiple tables at
the same time.

16/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Join

SELECT ...
FROM users JOIN orders ON (users.id=orders.buyer_id)

» There are many kinds of JOINs: one method to understand all
of them is to consider JOIN as a two-step process.

» Step 1: form a new table by taking the Cartesian product of
the tables.

» |f users has N rows and orders has M rows, the new table
will have NM rows, each consists of a row from users and a
row from orders.

» Step 2: remove rows from the new table following certain
criteria as defined by different JOINs.

» For the above example, we remove the rows where users.id
and orders.buyer_id are different.
» The new table lists buyers and their orders together.
» Actual implementations may eliminate the need to calculate
the Cartesian product depending if the criteria involves keys.

17/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Filtering

SELECT ...
FROM ...
WHERE orders.year=2023

» The WHERE clause filters rows by a given condition.

» So that a portion of the whole table may be retrieved.
» E.g. for this query we only care about orders placed in 2023.

18/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Grouping and Aggregation

SELECT users.id, SUM(orders.total) total_spending,
FROM ...

WHERE ...

GROUP BY users.id

» Rows in the joined new table may be further grouped via
GROUP BY clause.
» E.g. to group all rows belonging to the same buyer together.
» As SQL only operates on rows but not groups of rows, rows
from each group must be aggregated into a new row.
> Via aggregate functions like SUM to calculate the total
spending of each buyer.

19/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Output Ordering

SELECT users.id, SUM(orders.total) total_spending,
FROM users JOIN orders ON (users.id=orders.buyer_id)
WHERE orders.year=2023

GROUP BY users.id

ORDER BY total_spending DESC;

» Finally, the output rows may be sorted via ORDER BY.

> Either ascending (ASC) or descending (DESC).
» So that we can find who spends the most for 2023.

20/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Other SQL Statements

» There are other SQL statements to create, update, and delete
rows from tables and to manage tables as well.

» Check https://www.w3schools.com/sql/default.asp
and run examples there to learn SQL.

21/21 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

https://www.w3schools.com/sql/default.asp

	Cloud Storage
	Relational Database
	Relational Algebra and SQL

