ECE 473/573

Cloud Computing and Cloud Native Systems
Lecture 16 Scalability

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

October 8, 2025

1/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Considerations for Scaling

Efficiency without Scaling

2/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

» This lecture: 7
» Next two lectures (10/15, 10/20)

» Mesos: A Platform for Fine-Grained Resource Sharing in the
Data Center https://static.usenix.org/events/
nsdill/tech/full_papers/Hindman_new.pdf

» Large-scale cluster management at Google with Borg

https://storage.googleapis.com/
pub-tools-public-publication-data/pdf/43438.pdf

3/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


https://static.usenix.org/events/nsdi11/tech/full_papers/Hindman_new.pdf
https://static.usenix.org/events/nsdi11/tech/full_papers/Hindman_new.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43438.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43438.pdf

Outline

Considerations for Scaling

4/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Why Scalability?

» Able to add resources on demand avoids exteneded downtime

» Serve unexpected amount of users.
» Make resources ready to be available when some fails.

» Using more resources than necessary is expensive.
» Only pay for what you need — a major advantage for startups.
» Scalable services can live longer than its original expectations.
» Unscalable ones aren't capable of growing much.

5/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Efficiency and Scalability

» Scalability is not all about adding physical resources to handle
large swings in demand.

» Systems built with efficiency in mind are more likely to be
scalable.

» Able to absorb higher demand without the need to adding
hardware.

» Go helps to build services that are more efficient.
» In addition to scalable architecture and messaging patterns.

6/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Methods of Scaling

» Vertical scaling (scale up)

» Increase resource allocation for a single system.
> E.g. to rent a better server instance — though there is a limit.

» Horizontal scaling (scale out)

» Duplicate to limit the burden on any individual server.
» The presence of state may make it difficult or impossible.

» Functional partitioning

» Decompose large system into smaller functional units.
» Each unit is independently optimized, managed, and scaled.

7/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Performance Bottlenecks

» CPU: processing power

» Better CPU, GPU/FPGA accelerators, caching (more
memory), distributed and parallel processing (more network

1/0).
» Memory: capacity, throughput, and latency
» Better memory, more memory channels, compression (more
CPU), paging (more disk 1/0), distributed caching (more
network |/O)
» Disk I/O: throughput and latency

> Better drive, caching (more memory), compression (more
CPU), distributed storage (more network 1/0)

» Network I/O: throughput and latency
» Shorter distance, better hardware, compression (more CPU).
» Scaling up is difficult since we are approaching limits of
physics: device sizes, power density and heat transfer, and
speed of light.

8/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Application State vs. Resource State

» Application state: variables, objects, execution flow.
» For an application to resume itself if terminated unexpectedly.
» Not limited to the application itself: what about network
connections and other resources managed by the OS?
» Can we have a solution to maintain application state that is
transparent to the application?
P> Resource state: data stored explicitly in some data store.
» Allow shared accesses via database operations or with stronger

guarantees like ACID transactions.
» Durability can be provided to survive failures.

9/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Stateful vs Stateless Applications

» Stateful applications are those that cannot be safely restarted
if their application states are not known.
> E.g. after unexpected terminations.
» Stateless applications are those that can utilize resource state
to restart from a known good configuration.
» Benefit scalability since multiple requests can be processed
independently by creating new application instances.
» Make fail-fast possible which is simpler to implement than to

recover from faults.
» Encourage idempotent operations whose results are easier to

cache.

10/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Efficiency without Scaling

11/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Caching

» Trade-off memory to save CPU and disk/network throughput,
and to reduce access latency.

» Could be implemented as a key-value map, but need to
support
» Concurrent accesses.
> Less contention at increaing amount of clients.
» Bounded memory usage.
» A popular choice: LRU (least recently used) cache
» Key-value pairs in the map are additionally connected via a
doubly linked list.
» When a pair is accessed, it is moved to the back of the list.
» Pairs at the front of the list are the least recently used, and
can be evicted if the memory usage reaches the limit.
» Sharding may improve performance to access map
concurrently, and there are efficient algorithms to manipulate
linked list concurrently.

12/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Synchronization

» Communication via shared memory depends a lot on
synchronization primitives like locks.

» Threads competing for the lock at the same time will cause
contentions, which may degrade performance.

» Contentions are more likely to happen if a thread hold a lock
for a long time, e.g. to complete a long computation — this is
when you need the performance the most.

» Consider to use fine grained locks via sharding to reduce
contention but be careful about deadlocks.

» Go prefers to use communication via message passing.

» Still, since multiple goroutines may access the same channel
concurrently for read and write, synchronization is unavoidable.

» However, because each goroutine only need to access the
channel briefly for only read or write but not long
computation, there will be very few contentions.

» Buffered channels further reduce blocking and enable all
goroutines to run at their full speeds.

13/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Watch out for Memory Leaks

» GC (garbage collection) gives the illusion that memory from
all unused objects can be reclaimed for future use.

» Apparently “no memory leak!”
» However, there are other resources not managed by GC.
» And they will consume memory if not released properly,
causing memory leaks.
» E.g. network connections, file descriptors, threads not
terminated but holding a lot of memory blocks.
» For Go, pay special attention to goroutines that do not have a
clear exiting condition.

» They may refer to channels that consume a lot of memory.
» GC cannot reclaim these channels and the associated memory
as the goroutines are still using them.

14/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

> Stateless applications are easier to scale horizontally.
» Scalability is not all about adding physical resources.

» Optimizing applications to overcome the performance
bottlenecks helps to scale them better.

15/15 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



	Considerations for Scaling
	Efficiency without Scaling

