
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 16 Scalability

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

October 8, 2025

1/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Considerations for Scaling

Efficiency without Scaling

2/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 7
▶ Next two lectures (10/15, 10/20)

▶ Mesos: A Platform for Fine-Grained Resource Sharing in the
Data Center https://static.usenix.org/events/
nsdi11/tech/full_papers/Hindman_new.pdf

▶ Large-scale cluster management at Google with Borg
https://storage.googleapis.com/

pub-tools-public-publication-data/pdf/43438.pdf

3/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

https://static.usenix.org/events/nsdi11/tech/full_papers/Hindman_new.pdf
https://static.usenix.org/events/nsdi11/tech/full_papers/Hindman_new.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43438.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43438.pdf


Outline

Considerations for Scaling

Efficiency without Scaling

4/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Why Scalability?

▶ Able to add resources on demand avoids exteneded downtime
▶ Serve unexpected amount of users.
▶ Make resources ready to be available when some fails.

▶ Using more resources than necessary is expensive.
▶ Only pay for what you need – a major advantage for startups.

▶ Scalable services can live longer than its original expectations.
▶ Unscalable ones aren’t capable of growing much.

5/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Efficiency and Scalability

▶ Scalability is not all about adding physical resources to handle
large swings in demand.

▶ Systems built with efficiency in mind are more likely to be
scalable.
▶ Able to absorb higher demand without the need to adding

hardware.

▶ Go helps to build services that are more efficient.
▶ In addition to scalable architecture and messaging patterns.

6/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Methods of Scaling

▶ Vertical scaling (scale up)
▶ Increase resource allocation for a single system.
▶ E.g. to rent a better server instance – though there is a limit.

▶ Horizontal scaling (scale out)
▶ Duplicate to limit the burden on any individual server.
▶ The presence of state may make it difficult or impossible.

▶ Functional partitioning
▶ Decompose large system into smaller functional units.
▶ Each unit is independently optimized, managed, and scaled.

7/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Performance Bottlenecks

▶ CPU: processing power
▶ Better CPU, GPU/FPGA accelerators, caching (more

memory), distributed and parallel processing (more network
I/O).

▶ Memory: capacity, throughput, and latency
▶ Better memory, more memory channels, compression (more

CPU), paging (more disk I/O), distributed caching (more
network I/O)

▶ Disk I/O: throughput and latency
▶ Better drive, caching (more memory), compression (more

CPU), distributed storage (more network I/O)

▶ Network I/O: throughput and latency
▶ Shorter distance, better hardware, compression (more CPU).

▶ Scaling up is difficult since we are approaching limits of
physics: device sizes, power density and heat transfer, and
speed of light.

8/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Application State vs. Resource State

▶ Application state: variables, objects, execution flow.
▶ For an application to resume itself if terminated unexpectedly.
▶ Not limited to the application itself: what about network

connections and other resources managed by the OS?
▶ Can we have a solution to maintain application state that is

transparent to the application?

▶ Resource state: data stored explicitly in some data store.
▶ Allow shared accesses via database operations or with stronger

guarantees like ACID transactions.
▶ Durability can be provided to survive failures.

9/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Stateful vs Stateless Applications

▶ Stateful applications are those that cannot be safely restarted
if their application states are not known.
▶ E.g. after unexpected terminations.

▶ Stateless applications are those that can utilize resource state
to restart from a known good configuration.
▶ Benefit scalability since multiple requests can be processed

independently by creating new application instances.
▶ Make fail-fast possible which is simpler to implement than to

recover from faults.
▶ Encourage idempotent operations whose results are easier to

cache.

10/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Considerations for Scaling

Efficiency without Scaling

11/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Caching

▶ Trade-off memory to save CPU and disk/network throughput,
and to reduce access latency.

▶ Could be implemented as a key-value map, but need to
support
▶ Concurrent accesses.
▶ Less contention at increaing amount of clients.
▶ Bounded memory usage.

▶ A popular choice: LRU (least recently used) cache
▶ Key-value pairs in the map are additionally connected via a

doubly linked list.
▶ When a pair is accessed, it is moved to the back of the list.
▶ Pairs at the front of the list are the least recently used, and

can be evicted if the memory usage reaches the limit.
▶ Sharding may improve performance to access map

concurrently, and there are efficient algorithms to manipulate
linked list concurrently.

12/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Synchronization

▶ Communication via shared memory depends a lot on
synchronization primitives like locks.
▶ Threads competing for the lock at the same time will cause

contentions, which may degrade performance.
▶ Contentions are more likely to happen if a thread hold a lock

for a long time, e.g. to complete a long computation – this is
when you need the performance the most.

▶ Consider to use fine grained locks via sharding to reduce
contention but be careful about deadlocks.

▶ Go prefers to use communication via message passing.
▶ Still, since multiple goroutines may access the same channel

concurrently for read and write, synchronization is unavoidable.
▶ However, because each goroutine only need to access the

channel briefly for only read or write but not long
computation, there will be very few contentions.

▶ Buffered channels further reduce blocking and enable all
goroutines to run at their full speeds.

13/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Watch out for Memory Leaks

▶ GC (garbage collection) gives the illusion that memory from
all unused objects can be reclaimed for future use.
▶ Apparently “no memory leak!”

▶ However, there are other resources not managed by GC.
▶ And they will consume memory if not released properly,

causing memory leaks.
▶ E.g. network connections, file descriptors, threads not

terminated but holding a lot of memory blocks.

▶ For Go, pay special attention to goroutines that do not have a
clear exiting condition.
▶ They may refer to channels that consume a lot of memory.
▶ GC cannot reclaim these channels and the associated memory

as the goroutines are still using them.

14/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Stateless applications are easier to scale horizontally.

▶ Scalability is not all about adding physical resources.

▶ Optimizing applications to overcome the performance
bottlenecks helps to scale them better.

15/15 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Considerations for Scaling
	Efficiency without Scaling

