ECE 473/573
Cloud Computing and Cloud Native Systems
Lecture 18 Resource Management ||

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

October 20, 2025

1/16 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Outline

Borg

2/16 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Reading Assignment

» This lecture: Large-scale cluster management at Google with
Borg https://storage.googleapis.com/
pub-tools-public-publication-data/pdf/43438.pdf

» Next lecture: Kubernetes
https://kubernetes.io/docs/concepts/

3/16 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43438.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43438.pdf
https://kubernetes.io/docs/concepts/

Outline

Borg

4/16 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Google Borg

» An internal cluster management system developed by Google.

» Across a number of clusters each with up to tens of thousands
of machines.
» Support hundreds of thousands of jobs from many thousands

of different applications.

> Benefits
» Hide details of resource management and failure handling so
users can focus on application development.
» High availability and reliability, and support applications that
do the same.
» Operating at scale while providing resiliency and completeness.

5/16 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

User Perspective

6/16

Users of Borg are developers and SREs (system administrators
as site reliability engineers).
Unit of management is a Borg cell.

» Users submit work to Borg as jobs.
» Each job consists of tasks all run the same binary program.
» The Borg cell refers to the set of machine the job runs in.

Physically, machines in a cell belong to a single cluster.

» In a single datacenter building, connected by high-performance
datacenter-scale network.
» Machines are heterogeneous: CPU etc. can be all different.

Borg manages physical machines and hides their differences
and failuers from users.

> Install programs and dependencies.
» Health monitoring.
P Restart failed machines.

ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Workloads

» End-user-facing services.

» Sensitive to latency.
» Usually short-lived: us to sub-second

» Batch jobs.

» Take longer time to complete: seconds to days
» Not sensitive to short-term performance fluctuations.

» The workload mix varies across applications and over time.

7/16 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Job and Task Management

» Each job has a name, an owner, and the number of tasks.
» Each job can in addition have constraints.
» Force its tasks to run on machines with particular attributes
like processer type and OS version.
» Hard constraints must be satisfied; soft one are preferences.
» Each task maps to a set of Linux processes running in a
container on a machine.
» Task specifies its resource requirement.
» Task also knows its index within the job.
» Jobs and tasks in the system are in one of the three states:
Pending, Running, Dead.
» Users can submit new jobs or resubmit Dead jobs, which move
into Pending state if accepted.
» Users can kill Pending and Running jobs into Dead state.
» Users can update Pending and Running jobs without
interrupting them.
» Borg takes care of the rest, e.g. to schedule a Pending job into
Running state, and move jobs to Dead for failures.
8/16 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Quota and Priority

» Each job has a priority.
» Express the relative importance of jobs.
» e.g. monitoring > production > batch > best effort
» Quota is used to decide which jobs to admit for scheduling.

» A vector of maximum resource usage for a period of time
(typically months) at a given priority for an user.

> e.g. 20TB of memory for production for the rest of the month.

» Jobs with insufficient quota are rejected upon submission.

» Once admitted, higher priority jobs may preempt lower priority
ones to obtain resources.
» Higher priority quota is limited to available resources.

» However, users tend to overbuy higher priority quota to avoid
future shortages — waste of resource!

» Quota for lowest priority is set to infinite for all users.

» Jobs of lower priorities may be admitted but need to wait
resources to become available.

9/16 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Naming and Monitoring

» A “Borg name service” (BNS) name allows to identify a task
via the cell name, job name, and task index.

» The BNS name is further used in the DNS name for the task.

P> Almost every task uses its own HTTP server to report its
health and performance metrics.
» Borg restarts a task if its HT TP server stops to respond.
» Monitoring tools track these data for visualization and
notifications.

10/16 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Borg Architecture

» Recall that for each job there will be a Borg cell which
includes all machines the job runs on.
» Each Borg cell has a controller named Borgmaster.
» Consist of two processes: the main Borgmaster process and a
separate scheduler.
» Borglet, an agent process, runs on each machine in the cell.
» Start, stop, restart tasks and manage local resources.
» The Borgmaster main process interfaces with users and
Borglets, and manages states for tasks and machines.
» With multiple replicas supported by Paxos consensus.
» These replicas stores checkpoints, which consist of state
snapshots and change logs at a point in time.
» Checkpoints are used for fault recovery, troubleshooting, offline
simulation etc.

11/16 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Scheduling

12/16

Once a job is accepted by the Borgmaster main process, its
tasks are queued for scheduling by the scheduler.

The scheduler needs to evaluate task-machine relationships to
schedule tasks to machines.
Feasibility checking: a task is feasible to run on a machine if
there are sufficient available resources.

» Plus additional constraints from the job.

» May consider to evict lower-priority tasks.
Scoring: decide which tasks to run if many are feasible and
decide where to run them.

» Consider priority and fairness, data and package availability,
power and failure domains, packing quality for load spike etc.

ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Optimizations for Scalability

13/16

Functional partitioning: use separate threads for Boglet to
Borgmaster communications and read-only queries.

» Sharding further distributes these works to replicas.
Score caching: recompute scores for tasks and machines only
when there are changes.
Equivalence classes: handle similar tasks in a job as a whole
so that feasibility checking and scoring only need to run once.

Relaxed randomization: for a single task, avoid to evaluate it
on all machines for feasibility checking and and scoring.

> If enough machines evaluated following a random order are
feasible, then the best score so far is good enough.

ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Techniques for Availability

» Keep tasks running even if Borgmaster or Boglets are down.

» Automatically reschedule evicted tasks

» Reduce correlated failures by spreading tasks of a job across
failure domains such as machines, racks, and power domains.

» Rate-limit to find new machines for tasks as it could be either
due to large-scale machine failure or network partitioning.

» Avoid repeating task-machine schedulings that lead to crash.

» Limit task disruptions within a job during maintenance.

> Use idempotent operations to support retries.

14/16 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Isolation

» Security isolation is achieved by a combination of Linux
chroot jail, cgroup (container), and VM for software from
various sources.

» Performance isolation is supported via containers.

15/16

| 4
>

>

In order to limit resource usages of tasks.
Use appclass to indicate needs of tasks: latency-sensitive vs
batch.
Separate compressible resources like CPU and 1/0O bandwidth,
from non-compressible resources like memory capacity.

» Compressible resources can be reclaimed by rate-limiting.

» Kill tasks requiring more non-compressible resources than

allowed, or when such resources are over-committed.

Improve standard Linux CPU scheduler for both low latency
and high utilization.

ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

Summary

» People learned a lot from building Borg to support cluster
computing needs in Google, which are eventually applied in
the development of Kubernetes.

16/16 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

	Borg

