ECE 473/573
Cloud Computing and Cloud Native Systems
Lecture 20 Loose Coupling

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

October 27, 2025

1/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Tight Coupling

Communication Patterns

2/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

» This lecture: 8

> Next Lecture: Apache Kafka
https://kafka.apache.org/documentation/#design

3/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


https://kafka.apache.org/documentation/#design

Outline

Tight Coupling

4/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Coupling

> Degree of direct knowledge between components.

> E.g. a client that sends requests to a service.
» Cannot be avoided for a system to function.

» Tightly coupled: a great deal of knowledge.
> E.g. to require same version of shared library.
» An easy choice for short-term.
» Problematic for long-term evolutions — one must change all
tightly coupled components at the same time.
» Loosely coupled: minimal direct knowledge.
» Components are relatively independent, interacting through
mechanisms that are stable and mature.
» Require more up-front planning but easier to upgrade or even
be rewritten, without affecting existing systems.

5/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Forms

| 2

6/20

of Tight Coupling

Things that are wrongly assumed to not change.
» Modern software engineering practices are based on the
assumption that requirements will change frquently.
Fragile exchange protocols
» Clients and servers communicating via SOAP /XML messages
rely on strict formats that cannot be updated independently.
» REST messages have less coupling because both clients and
servers may choose to ignore attributes they don't understand.
Shared dependencies
» Require to use specific libraries and even specific versions of
libraries for communication, e.g. Java RMI.
Shared point-in-time
» A request-response messaging creates coupling in time as the
service must be available at the time.
» A bad choice if users are not waiting for immediate answers.
Fixed addresses
» Have you ever hardcoded a file path to read data from?
» Network services may relocate, and having multiple of them
helps to separate production, testing, and development.
ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Communication Patterns

7/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Communications Between Services

» Via message passing
» Shared memory communications are less popular nowadays
among servers as they make communication implicit and thus
prevent optimizations toward delays and failures.
» Make use of a contract.
» Backward-compatible with existing components.
» Forward-compatible with future components.
> Messaging patterns

» Request-response (synchronous): requester (client) issues a
request to a receiver (server) and waits for a response.

» Publish-subscribe (asynchronous): publisher send a message to
a middleware (event bus, message exchange, etc.) and
subscribers pick it up later.

> We will focus on request-response for this lecture and leave
publish-subscribe to the next.

8/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Request-Response Messaging

> A layered approach where structures can be introduced

» TCP/UDP: messages in bytes, need to handle message length
for TCP, and ordering and retrying for UDP.

» Remote procedure calls (RPC): use messages to provide
illusions to call a function on another server by sending
function name and parameters and receiving returned values.

» HTTP: messages as text, e.g. HTML, XML, json.

» REST: messages in json to represent complex data.

» GraphQL: json as a query language.

» Synchronous communications like request-response are easy to
reason and straightforward to implement.

» Point-to-point

» Responses are either available or not, indicating failures that
can be handled further.

» Not ideal for one-to-many communications or when requester
needs to wait for long time.

9/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



HTTP Requests in Go

// Get issues a GET to the specified URL
func Get(url string) (*http.Response, error)
// Post issues a POST to the specified URL
func Post(url, contentType string, body io.Reader) (*Response, error)
type Response struct {
Status string // e.g. "200 OK"
StatusCode int // e.g. 200
// Header maps header keys to values.
Header Header
// Body represents the response body.
Body io.ReadCloser
// ContentLength records the length of the associated content. The
// value -1 indicates that the length is unknown.
ContentLength int64
// Request is the request that was sent to obtain this Response.
Request *Request

» From the net/http package.
» Provide convenience functions like Get and Post.

» That one can call directly without the need to create some
objects for the request first.

10/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



HTTP GET Example

package main

import (
"fm-t n
n io n
"net/http"
)

func main() {
resp, err := http.Get("http://example.com") // Send an HTTP GET
if err != nil {
panic(err)
¥
defer resp.Body.Close() // Close your response!
body, err := io.ReadAll(resp.Body) // Read body as []byte
if err != nil {
panic(err)
}
fmt.Println(string(body))

11/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



HTTP POST Example

package main
import (
"fmt"
n io n
"net/http"
"strings"
)
const json = ‘{ "name":"Matt", "age":44 }¢ // This is our JSON
func main() {
in := strings.NewReader (json) // Wrap JSON with an io.Reader
// Issue HTTP POST, declaring our content-type as "text/json"
resp, err := http.Post("http://example.com/upload", "text/json", in)
if err != nil {
panic(err)
}
defer resp.Body.Close() // Close your response!
message, err := io.ReadAll(resp.Body)
if err != nil {
panic(err)
}
fmt.Printf (string(message))

12/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Remote Procedure Calls (RPC) with gRPC

» oRPC is a full-featured data exchange framework.

» Open sourced in 2015 by Google, and with CNCF from 2017.
» A modern RPC solution as an alternative to RESTful services.

» Advantages
» Conciseness: more compact than json, less network |/O.
» Speed: binary format is much faster to produce and consume.
» Strong-typing: avoid conversions, easier for troubleshooting.
» Feature-rich: e.g. authentication, encryption, timeout, and
compression.
» Disadvantages
» Contract-driven: more coupling, less suitable for external
facing services.
» Binary format: not human-readable, complicating
troubleshooting.

13/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



gRPC Message Definition

syntax = "proto3";

option go_package = "github.com/cloud-native-go/ch08/keyvalue";

message GetRequest {
string key = 1;

}

message GetResponse {
string value = 1;

}

message PutRequest {
string key = 1;
string value = 2;

}

message PutResponse {}

message DeleteRequest {
string key = 1;

}

message DeleteResponse {}

> Make use of protocol buffers, fairly straightforward to follow.
» The protocol compiler generates code for clients and servers.
» Available for most programming languages.

14/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



gRPC Service Definition

service KeyValue {

rpc Get(GetRequest) returns (GetResponse);

rpc Put(PutRequest) returns (PutResponse);

rpc Delete(DeleteRequest) returns (DeleteResponse);
}

» A service consists of a group of methods.

» Define an interface without providing implementations.

» Methods are used in the client program with your choice of
programming language.

» Methods are implemented in the server program with your
choice of programming language.

» Clients and servers can use different programming languages.

15/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Implementing gRPC Server

// generated server interface to be implemented

type KeyValueServer interface {
Get (context.Context, *GetRequest) (*GetResponse, error)
Put (context.Context, *PutRequest) (*PutResponse, error)
Delete(context.Context, *DeleteRequest) (*¥PutResponse, error)

}

// server.go
// package, import etc.
type server struct {
pb.UnimplementedKeyValueServer // embed the generated struct
}
func (s *server) Get(ctx context.Context, r *pb.GetRequest) (*pb.GetResponse, e
log.Printf ("Received GET key=/v", r.Key)
value, err := Get(r.Key)
return &pb.GetResponse{Value: valuel}, err
}
// Put, Delete, etc.

16/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Implementing gRPC Server (cont.)

func main() {
// Create a gRPC server and register our KeyValueServer with it
s := grpc.NewServer ()
pb.RegisterKeyValueServer (s, &server{})
// Open a listening port on 50051

lis, err := net.Listen("tcp", ":50051")

if err != nil {
log.Fatalf("failed to listen: %v", err)

}

// Start accepting connections on the listening port

if err := s.Serve(lis); err != nil {
log.Fatalf("failed to serve: %v", err)

}

}

17/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Implementing gRPC Client

// generated client interface to be used

type KeyValueClient interface {
Get(ctx context.Context, in *GetRequest, opts ...grpc.CallOption) (*GetRespon
Put(ctx context.Context, in *PutRequest, opts ...grpc.CallOption) (*PutRespon
Delete(ctx context.Context, in *DeleteRequest, opts ...grpc.CallOption) (*Put

}

// client.go
// package, import etc.
func main() {
// Set up a connection to the gRPC server
conn, err := grpc.Dial("localhost:50051", grpc.WithInsecure(),
grpc.WithBlock(), grpc.WithTimeout(time.Second))
... // error handling
defer conn.Close()
// Get a new instance of our client
client := pb.NewKeyValueClient (conn)

18/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Implementing gRPC Client (cont.)

var action, key, value string
if len(os.Args) > 2 {
action, key = os.Args[1], os.Args[2]
value = strings.Join(os.Args[3:1, " ")
¥
// Use context to establish a 1-second timeout.
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
defer cancel()
switch action {
case "get":
r, err := client.Get(ctx, &pb.GetRequest{Key: keyl})
. // error handling
log.Printf("Get %s returns: %s", key, r.Value)
case "put":
_, err := client.Put(ctx, &pb.PutRequest{Key: key, Value: value})
... // error handling
log.Printf ("Put %s", key)
default:
log.Fatalf ("Syntax: go run [get|put] KEY VALUE...")
}
}

19/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

» Coupling is unavoidable.

» But we can keep it minimal with a good choice of
communication patterns.

20/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



	Tight Coupling
	Communication Patterns

