ECE 473/573
Cloud Computing and Cloud Native Systems
Lecture 21 Message Queues

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

October 29, 2025

1/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Message Queues

Kafka

2/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

» This lecture: Apache Kafka
https://kafka.apache.org/documentation/#design

> Next Lecture: 9

3/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


https://kafka.apache.org/documentation/#design

Outline

Message Queues

4/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Message Queues

> A middleware to enable message communication between
senders and receivers, e.g. a message broker.
» Reduce coupling by removing the immediate connections
between message senders and receivers.
» Serve as a buffer to reduce impact of performance difference
between senders and receivers when there is a burst of load.

» How massages are distributed among receivers for a queue?

» Producer-Consumer: senders are producers generating jobs as
messages, receivers are consumers taking jobs out of the queue
to work on them — no two consumers work on the same job.

» Publisher-Subscriber (Pub-Sub): senders publish messages and
all receivers as subscribers receive all messages.

5/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Persistence

» What if queues fails?

> Persistence is required for producer-consumer queues.
» Otherwise jobs may be lost.
» Persistence for Pub-Sub queues
» With persistence, a subscriber can subscribe at any time to
receive all past and future messages.
» Without persistence, a subscriber only receives future messages
after it subscribes but not past ones.
» However, it takes resources to support persistence so one need
to make a choice depending on application requirements.

6/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Topic Management

» Queues are usually identified by topics.
» Usually a meaningful string providing hints on what messages
inside are all about.
» More frequently used for Pub-Sub queues.
» Each publisher or sender, sends (topic, message) to the
message broker.
» So the message broker knows to which queue the message
should go.
» Each subscriber or receiver, when establishing connection with
the message broker, specifies what topics it is interested into.
» Then the message broker will only send (topic, message) with
matching topics to this subscriber.

7/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Ideal Queue Behavior

» FIFO (first-in-first-out) ordering.
» Messages are delivered to the receivers in the order they are
sent by the senders.
» Exactly-once delivery.
P> Messages sent by senders are delivered to receivers exactly
once — no lost messages and no repetition.
» For producer-consumer queues, a producer generates a message
and exactly one consumer consumes it exactly exactly once.
» For publisher-subscriber queues, a publisher publishes a
message and every subcriber receives it exactly once.
» Can we achieve these with networked services?

» With a single message broker.
» With multiple message brokers for horizontal scalability.

8/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Communication Challenges for Ordering

» Consider when there is a single message broker.
» The broker should be able to store and then send out messages
in the order of their arrivals.
» The FIFO ordering makes it possible to optimize persistence
for high sequential read and write throughput.
> It takes time for messages to arrive from senders to the
message broker and from the message broker to receivers.
» For best performance, messages may take different network
paths so may arrive out-of-order.
» Messages from different senders on the same topic can only be
ordered when they arrive at the message broker.
» Why can't the message broker reorder messages differently
than the arrival order, e.g. using timestamps as keys?
» This functionality should be provided through a key-value
database that is more complicated and much slower.

9/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Communication Challenges for Exactly-Once Delivery

» Network communications are unreliable.
» Protocols like TCP and HTTP guarantee delivery only when
there is no failure.
» Delivery guarantees considering failures
> At-most once (best effort): messages are sent once, don't use
any acknowledgement.
P At-least once: resend messages until acknowledgements are
received.
» Apparently, exactly-once delivery can be achieved by using
sequence numbers with at-least once delivery.
» Message brokers number messages as they arrive.
» Subscribers and consumers utilize these numbers to
acknowledge and reorder messages.
» However, maintaining sequence numbers as messages are
generated by publishers and producers is not trivial.
» Resending unacknowledged messages further complicates the
issue as it leads to additional out-of-order arrivals.

10/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Scalability Challenges

» Consider horizontal scalability where multiple message brokers
are running on multiple servers.
» Each message broker can handle a number of topics.
» Similar to the idea of sharding and function partitioning.
» Each topic can be replicated to multiple message brokers.
» Which then serve huge number of subscribers.
» However,

» Scaling with multiple publishers and producers sending
messages to the same topic is difficult.

» Scaling for consumers is difficult as replicas need to have
consensus on which consumer should process which message.

11/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Kafka

12/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Apache Kafka

» An open-source distributed event streaming platform.
» Developed in LinkedIn, open-sourced in 2011
> Features

» Low-latency message delivery for high volume event streams,
e.g. real-time log aggregation and offline data loading.

» Support a computational model for real-time analytics by
consuming and producing event streams.

» Fault tolerance.

13/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Architecture

P> Events as messages are organized and stored in topics.

» A combination of producer-consumer and publisher-subscriber
message queues for scalability.

> Kafka producers publish (write) events to topics.

» Kafka consumers subscribe to topics and read events within.

» Events in a topic are partitioned — a group of consumers can
read these events in parallel, each for a different partition.

» Multiple groups of consumers can still read events in a topic as
many times as desired.

> Kafka brokers store partitions for topics.

» Sharding: partitions of a single topic are distributed to multiple
brokers for better write performance.

» Replication: a single partition is replicated across multiple
brokers for better read performance, availability, and durability.

14/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Persistence and Performance

» Major factor to drive Kafka design decisions.
» Rely heavily on filesystem for storing and caching messages.
» Sequential write and read throughput are high enough to
saturate network communications.
» OS automatically makes efficient use of large amount of
memory when caching disk data for sequential accesses.
» On the contrary, most languages cannot use memory as
efficiently due to object overhead and garbage collections.

» Disk space is virtually unlimited so messages can be kept for a
long time before being deleted.

» To guarantee high performance, only rely on simple and
sequential accesses to files.

» Store messages by appending to files.

» Serve messages by reading sequentially.

» Not to support any kinds of indices that would need random
accesses — use databases instead.

15/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Message Delivery Semantics

» Assume brokers to work perfectly for now.

» No guarantee among multiple producers within Kafka.

» No ordering among multiple partitions, even if they are from
the same topic.

» Exactly-once processing is supported via Kafka transactions.

» A single transaction reads from and writes to multiple
partitions, possibly from different topics.

» There are options for weaker guarantees for other use cases.

» A single producer with a single partition.
» A group of consumers with a topic.

16/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Message Delivery for Producers

> A single producer with a single partition.
> At-most once: broker doesn’t acknowledge
» Messages may arrive out of order.
P At-least once: producer resends messages until acknowledged

» Broker may store a message twice.

» |If a previous message is not acknowledged yet, the next
message may arrive out of order.

» Idempotent delivery: producer adds sequence numbers

» Base on at-least once delivery

» Broker remove duplicates and acknowledges messages in-order.

» May affect performance as out-of-order arrivals are not
acknowledged and need resend.

» Only for the lifetime of the producer, no guarantee if it restarts.

17/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Message Processing for Consumers

» A group of consumers with a topic.

» Each consumer reads one partition of the topic.
» Each consumer saves its position within its partition.
» The position indicates where to read from if the consumer
restarts after a failure.
» However, there are two choices as the consumer need to
process the message.
» Process-then-save: at-least once
» |If the consumer fails after processing the message but before
saving the position, then when it restarts, it will process the
message again.
» Make sure the processing is idempotent to avoid any issues.
» Save-then-process: at-most once

» |If the consumer fails after saving the position but before
processing the message, then when it restarts, it will skip the
message.

18/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Replication

» Unit of replication is a partition.
» Consensus determines a leader replica for each partition.

» Producers write to leader directly.

» Other replicas (followers) replicate from the leader.

» Consensus and all states are managed in ZooKeeper.

» Not P for CAP theorem: no partition tolerance.

» In-sync replicas (ISRs)

» Replicas that are not too far behind the leader.

» Messages available from all ISRs are considered committed.

» Committed messages are less likely to be lost if the leader fails.

» Consumers only consume committed messages.

» Producers can choose to receive acknowledgement when the
message reaches the leader or when it is committed.

19/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

P> Use message queues to decouple message senders and
receivers.

> Make a choice between distributed message queues and
distributed database systems by considering their performance
differences and your application use cases.

20/20 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



	Message Queues
	Kafka

