ECE 473/573
Cloud Computing and Cloud Native Systems
Lecture 23 Chaos Engineering

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

November 5, 2025

1/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Health Check

Chaos Enigeering

2/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

» This lecture: 9, Chao Engineering

» What is chaos engineering?
https://www.ibm.com/think/topics/chaos-engineering

» Next Lecture: 10

3/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


https://www.ibm.com/think/topics/chaos-engineering

Outline

Health Check

4/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Service Redundancy

» Duplicate critical components or functions to improve

reliability.
» Deploy component to multiple server instances.
» Ideally across multiple zones or even across multiple regions.

» Autoscaling helps to maintain certain level of redundancy as
demand fluctuates. However, it takes time to start an instance
so there should be room for redundancy without scaling.

» Fault masking: a system fault is invisibly compensated for
without being explicitly detected.

» Without careful planning, redundancy will lead to fault
masking that conceals progressive faults.

» E.g. loss of nodes for a service are not observed until all nodes
are lost, causing a sudden and catastrophic outcome.

5/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Health Check: Pull Model

» An API endpoint for clients to decide if a service instance is
alive and healthy.

» For clients that are aware of the redundancy, e.g. Cassandra
and Kafka clients, as well as load balancers, monitoring
services, service registries, etc.

» Usually implemented as an HTTP endpoint for simplicity.

> E.g. available from /health that returns 200 OK for a health

service or 503 Service Unavailable otherwise.
» Trade-offs between latency and scalability.

» Frequent health checks may lead to inefficiency, in particular
when there are a lot of services and a lot of clients.

» For longer intervals between health checks, clients may miss
critical information like when a service actually dies.

6/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Health Check: Push Model

P |et services send health information to clients.
» Periodically, e.g. heartbeats.
» Proactively when health status changes.

» A more complex system.
» Where are the clients?

» What if there are more information than what a single client
can handle?

» Use message queues to decouple services from clients and to
handle scalability better.

» What does it mean for an instance to be “healthy”?

> Is a response of 200 OK from /health sufficient for both the
clients and the instance?

7/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



“Healthy” Instances

» Simple definition: “healthy” means “available”
» But availability of instances may be impacted by availability of
services these instances depending on.
» Restarting/replacing these instances won't help at all.

P> Need to make choices depending on services.

P Liveness checks: a simple response to indicate the service
instance is reachable and responding, confirming correctness of
network, security, and service configuration.

» Shallow health checks: ensure local resources (memory, CPU,
disk etc.) and dependencies (monotoring etc.) are available so
the service instance is likely to be able to funciton.

» Deep health checks: inspect the ability to interact with other
subsystems, identifying potential issues like networking —
however, it is costly and it is possible to have all instances
reporting unhealthy.

8/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Chaos Enigeering

9/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Chaos Engineering

» How do we prove mechanisms designed and implemented for
resilience actually works?

» Waiting for failure to happen and then discovering the
implementaion has a bug would lead to disasters.

» Intentional and controlled causing of failures.

» To understand their impacts in complex distributed systems.
» To have a better plan for when failures actually happen — time
is precious when the system is actually down.

10/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Production vs. Pre-Production Environments

» Production environment provides the most accurate
environment for understanding how an incident impacts the
customer experience.

» For pre-production environments like development,

» Some issues could only be triggered when a level of live traffic
is presented.
» Security configurations could be very different.

> Still, it is reasonable to start practices of chaos engineering in
a development environment to understand the process before
applying them to a production environment that will affect
actual customers.

11/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



A Netflix Story

> An outage in 2008 led to a three-day interruption.
»> When Netflix was transiting to online streaming.

» Chaos Monkey: an open source tool to create random
incidents in services and infrastructure
» Implemented when Netflix moved from private data center to
AWS which is less reliable.
» |dentify weaknesses that can be fixed or addressed through
automatic recovery procedures
» Minimize the damage if and when an unavoidable failure occurs

12/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Experiments

» Latency injection
» Create scenarios that emulate a slow or failing network
connection
» Understand how system performs with unexpected network
delays or slower response times.

» Fault injection

» Introduce errors into the system, e.g. disk failures, processes
termination, host shutdown.

» Determine how faults propagate to other dependent systems
and whether they interrupt services.

13/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Experiments (Cont.)

» Load generation
» Stress the system by sending significant traffic levels well

beyond normal operations.
» Understand where the bottlenecks are in the system, which in

turn allows to build more scalable systems.

» Canary testing
» Release a new product or feature to a small group of users.
» Allow to introduce product or feature to production
environment while limiting the impacts of glitches or bugs to
only a few of clients.

14/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Scope of Experiments

» Component or pod

» E.g. failure of a single pod or throttle CPU/memory for a
single instance.

» Node and cluster

» E.g. failure of the whole instance or a set of instances in the
same data center.

» Service and cross-service

» E.g. make a database unavailable that will impact other
services.

» Business or application logic
» E.g. a bug in a new product or feature.

15/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Best Practices

16/19

For chaos engineering to be effective, several principles need
to be addressed.

Understand the system: how subsystems interact?

Enbrace failure: failures will always happen, it's better to plan
ahead than trying to solving issues right after they appear.

Establish steady-state behavior: how the system behave when
running correctly?

Identify real-world incidents: explore incidents that are likely
to happen, e.g. network failures and bad configurations.

Create a game day: schedule a day for multiple experiments
to maximize findings.

Use automation: make the process reproducible and less labor
intensive.

ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Best Practices (Cont.)

VVvyYvYyy

v

17/19

Keep in mind the experiments could be running in production
environment with actual customers.

» Minimize the blast radius so that the actual harm to customers
is as minor as possible.

Target a subset of services
Run the experiment for a finite time
Run the experiment away from peak traffic

Run the experiment in the development environment (but
understand this is different than the production environment).

Have multiple runs of experiments to cover every component
when system is continually changing.

ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Challenges and Limitations

» Human factors
» Unintended customer impact
» Organizational inertia and cultural challenge.
» Cost and resource overhead need to be justified.

» Technology factors
» False negatives where system appears resilient but not.
» Limitations on scope and coverage of experiments as some
faults are hard to inject.
» Gap from observation to action.

18/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

P Use health check to monitor system status

» Apply chaos enigneering to understand system behavior when
faults are presented and plan ahead.

19/19 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



	Health Check
	Chaos Enigeering

