
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 23 Chaos Engineering

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

November 5, 2025

1/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Health Check

Chaos Enigeering

2/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 9, Chao Engineering
▶ What is chaos engineering?

https://www.ibm.com/think/topics/chaos-engineering

▶ Next Lecture: 10

3/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

https://www.ibm.com/think/topics/chaos-engineering


Outline

Health Check

Chaos Enigeering

4/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Service Redundancy

▶ Duplicate critical components or functions to improve
reliability.
▶ Deploy component to multiple server instances.
▶ Ideally across multiple zones or even across multiple regions.

▶ Autoscaling helps to maintain certain level of redundancy as
demand fluctuates. However, it takes time to start an instance
so there should be room for redundancy without scaling.

▶ Fault masking: a system fault is invisibly compensated for
without being explicitly detected.
▶ Without careful planning, redundancy will lead to fault

masking that conceals progressive faults.
▶ E.g. loss of nodes for a service are not observed until all nodes

are lost, causing a sudden and catastrophic outcome.

5/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Health Check: Pull Model

▶ An API endpoint for clients to decide if a service instance is
alive and healthy.
▶ For clients that are aware of the redundancy, e.g. Cassandra

and Kafka clients, as well as load balancers, monitoring
services, service registries, etc.

▶ Usually implemented as an HTTP endpoint for simplicity.
▶ E.g. available from /health that returns 200 OK for a health

service or 503 Service Unavailable otherwise.

▶ Trade-offs between latency and scalability.
▶ Frequent health checks may lead to inefficiency, in particular

when there are a lot of services and a lot of clients.
▶ For longer intervals between health checks, clients may miss

critical information like when a service actually dies.

6/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Health Check: Push Model

▶ Let services send health information to clients.
▶ Periodically, e.g. heartbeats.
▶ Proactively when health status changes.

▶ A more complex system.
▶ Where are the clients?
▶ What if there are more information than what a single client

can handle?
▶ Use message queues to decouple services from clients and to

handle scalability better.

▶ What does it mean for an instance to be “healthy”?
▶ Is a response of 200 OK from /health sufficient for both the

clients and the instance?

7/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



“Healthy” Instances

▶ Simple definition: “healthy” means “available”
▶ But availability of instances may be impacted by availability of

services these instances depending on.
▶ Restarting/replacing these instances won’t help at all.

▶ Need to make choices depending on services.
▶ Liveness checks: a simple response to indicate the service

instance is reachable and responding, confirming correctness of
network, security, and service configuration.

▶ Shallow health checks: ensure local resources (memory, CPU,
disk etc.) and dependencies (monotoring etc.) are available so
the service instance is likely to be able to funciton.

▶ Deep health checks: inspect the ability to interact with other
subsystems, identifying potential issues like networking –
however, it is costly and it is possible to have all instances
reporting unhealthy.

8/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Health Check

Chaos Enigeering

9/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Chaos Engineering

▶ How do we prove mechanisms designed and implemented for
resilience actually works?
▶ Waiting for failure to happen and then discovering the

implementaion has a bug would lead to disasters.

▶ Intentional and controlled causing of failures.
▶ To understand their impacts in complex distributed systems.
▶ To have a better plan for when failures actually happen – time

is precious when the system is actually down.

10/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Production vs. Pre-Production Environments

▶ Production environment provides the most accurate
environment for understanding how an incident impacts the
customer experience.

▶ For pre-production environments like development,
▶ Some issues could only be triggered when a level of live traffic

is presented.
▶ Security configurations could be very different.

▶ Still, it is reasonable to start practices of chaos engineering in
a development environment to understand the process before
applying them to a production environment that will affect
actual customers.

11/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



A Netflix Story

▶ An outage in 2008 led to a three-day interruption.
▶ When Netflix was transiting to online streaming.

▶ Chaos Monkey: an open source tool to create random
incidents in services and infrastructure
▶ Implemented when Netflix moved from private data center to

AWS which is less reliable.
▶ Identify weaknesses that can be fixed or addressed through

automatic recovery procedures
▶ Minimize the damage if and when an unavoidable failure occurs

12/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Experiments

▶ Latency injection
▶ Create scenarios that emulate a slow or failing network

connection
▶ Understand how system performs with unexpected network

delays or slower response times.

▶ Fault injection
▶ Introduce errors into the system, e.g. disk failures, processes

termination, host shutdown.
▶ Determine how faults propagate to other dependent systems

and whether they interrupt services.

13/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Experiments (Cont.)

▶ Load generation
▶ Stress the system by sending significant traffic levels well

beyond normal operations.
▶ Understand where the bottlenecks are in the system, which in

turn allows to build more scalable systems.

▶ Canary testing
▶ Release a new product or feature to a small group of users.
▶ Allow to introduce product or feature to production

environment while limiting the impacts of glitches or bugs to
only a few of clients.

14/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Scope of Experiments

▶ Component or pod
▶ E.g. failure of a single pod or throttle CPU/memory for a

single instance.

▶ Node and cluster
▶ E.g. failure of the whole instance or a set of instances in the

same data center.

▶ Service and cross-service
▶ E.g. make a database unavailable that will impact other

services.

▶ Business or application logic
▶ E.g. a bug in a new product or feature.

15/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Best Practices

▶ For chaos engineering to be effective, several principles need
to be addressed.

▶ Understand the system: how subsystems interact?

▶ Enbrace failure: failures will always happen, it’s better to plan
ahead than trying to solving issues right after they appear.

▶ Establish steady-state behavior: how the system behave when
running correctly?

▶ Identify real-world incidents: explore incidents that are likely
to happen, e.g. network failures and bad configurations.

▶ Create a game day: schedule a day for multiple experiments
to maximize findings.

▶ Use automation: make the process reproducible and less labor
intensive.

16/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Best Practices (Cont.)

▶ Keep in mind the experiments could be running in production
environment with actual customers.
▶ Minimize the blast radius so that the actual harm to customers

is as minor as possible.

▶ Target a subset of services

▶ Run the experiment for a finite time

▶ Run the experiment away from peak traffic

▶ Run the experiment in the development environment (but
understand this is different than the production environment).

▶ Have multiple runs of experiments to cover every component
when system is continually changing.

17/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Challenges and Limitations

▶ Human factors
▶ Unintended customer impact
▶ Organizational inertia and cultural challenge.
▶ Cost and resource overhead need to be justified.

▶ Technology factors
▶ False negatives where system appears resilient but not.
▶ Limitations on scope and coverage of experiments as some

faults are hard to inject.
▶ Gap from observation to action.

18/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Use health check to monitor system status

▶ Apply chaos enigneering to understand system behavior when
faults are presented and plan ahead.

19/19 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Health Check
	Chaos Enigeering

