
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 24 Manageability

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

November 10, 2025

1/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Manageability and Application Configuration

Manageability in Cloud Systems

2/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 10

▶ Next Lecture: 11

3/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Manageability and Application Configuration

Manageability in Cloud Systems

4/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Manageability

▶ Change behaviors without having to recode and redeploy.
▶ By yourself or by someone else.

▶ Manageability allows to make changes from outside.
▶ Maintainability allows to make changes from inside, usually by

updating code.

▶ Manageability for complex systems.
▶ Make configuration and control options available.
▶ Use monitoring, logging, and alerting to identify components

that require management, e.g. misconfigured components.
▶ Manage deployment by updating, rolling back, and scaling

system components.
▶ Discover available services.

5/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Application Configuration

▶ Configuration: anything likely to vary between environments
like staging, production, developer, etc.

▶ Store configuration in the environment.
▶ Configuration should be strictly separated from the code.
▶ Configurations should be stored in version control – make it

possible to inspect, review, rollback, and troubleshoot changes.

▶ Configuration practices
▶ Command-line flags and environment variables: use start-up

scripts for version control.
▶ Configuration files: use standard format like JSON and YAML.

6/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with Environment Variables

▶ Use environment variables
name := os.Getenv("NAME")

place := os.Getenv("CITY")

fmt.Printf("%s lives in %s.\n", name, place)

▶ Distinguish between an empty value and an unset value.
if val, ok := os.LookupEnv(key); ok {

fmt.Printf("%s=%s\n", key, val)

} else {

fmt.Printf("%s not set\n", key)

}

7/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with Command-Line Arguments

package main

import (

"flag"

"fmt"

)

func main() {

strp := flag.String("string", "foo", "a string")

intp := flag.Int("number", 42, "an integer")

boolp := flag.Bool("boolean", false, "a boolean")

flag.Parse() // Call flag.Parse() to execute command-line parsing.

fmt.Println("string:", *strp)

fmt.Println("integer:", *intp)

fmt.Println("boolean:", *boolp)

fmt.Println("args:", flag.Args())

}

▶ Use the flag package for command-line flags.
▶ Register with types, default values, and short descriptions
▶ Map flags to variables.

8/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with Command-Line Arguments (cont.)

$ go run . -help

Usage of /var/folders/go-build618108403/exe/main:

-boolean

a boolean

-number int

an integer (default 42)

-string string

a string (default "foo")

$ go run . -boolean -number 27 -string "A string." Other things.

string: A string.

integer: 27

boolean: true

args: [Other things.]

9/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with JSON Files

type Config struct {

Host string

Port uint16

Tags map[string]string

}

func EncodeJson() {

c := Config{

Host: "localhost",

Port: 1313,

Tags: map[string]string{"env": "dev"},

}

bytes, err := json.Marshal(c)

fmt.Println(string(bytes))

// {"Host":"localhost","Port":1313,"Tags":{"env":"dev"}}

}

▶ Use json.Marshal() to encode any struct as JSON string.
▶ Only public fields (begin with a capital letter) are encoded.

10/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with JSON Files (cont.)

▶ Use json.Unmarshal() to decode JSON string into a struct.
c := Config{}

bytes := []byte(‘{"Host":"127.0.0.1","Port":1234,"Tags":{"foo":"bar"}}‘)

err := json.Unmarshal(bytes, &c)

▶ Missing fields will have a default value of zero or empty.
▶ Extra fields will be ignored.

▶ Use interface{} to decode JSON string as it is.
var f interface{}

bytes := []byte(‘{"Foo":"Bar", "Number":1313, "Tags":{"A":"B"}}‘)

err := json.Unmarshal(bytes, &f)

fmt.Println(f)

// map[Number:1313 Foo:Bar Tags:map[A:B]]

▶ f has a type of map[string]interface{}, enabling a
recursive tree-like data structure for arbitrary JSON data.

▶ Mapping between struct and JSON string can be customized
via struct field tags (like annotations in Java).

▶ YAML strings are handled similarly.

11/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Manageability and Application Configuration

Manageability in Cloud Systems

12/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Layers of Configurations

▶ Default values
▶ User shouldn’t need to configure everything.
▶ Default behavior should be reasonable and unsurprising, e.g.

typical behavior out-of-the-box, safe security setting, limited
CPU and memory usage.

▶ Allow user to gradually learn the options to config.

▶ Overrides
▶ Make the preferences clear when multiple sources of

configurations are available, e.g. command-line arguments
override environment variables, which override default values.

▶ Make the preferences consistent across development and
production environments.

▶ Provide useful feedback on where a value comes from,
especially when misconfiguration happens.

13/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Central Configuration Store

▶ Provide source of truth for configurations across nodes in a
distributed system.

▶ For example, Kubernetes use etcd
▶ Distributed key-value store where configuration values can be

obtained.
▶ Use consensus algorithm to guarantee consistency when

configurations are updated on the fly.
▶ Not partition tolerant since it depends on a majority quorum.

14/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reloading Configurations

▶ Should we reload configurations when they change?

▶ No for simplicity: kill and restart
▶ Yes for to minimize downtime

▶ Applications and services may watch for updates automatically
combining OS filesystem notifications, polling, and hashing.

▶ Or be notified via the SIGHUP signal as a convention: this
signal was used to notify the terminal of a process is closed –
but for service processes without a terminal, it never happens
so we reuse the signal for configuration updates.

15/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Feature Management

▶ Allow control of program features and flows.
▶ Enable experimental features conditionally for testing.
▶ Adjust features like algorithms according to use cases.
▶ Reduce need to deploy multiple versions when rollout new

features.

▶ Feature flags: enable/disable features via configurations
▶ Manage different code versions in one code base, encouraging

smaller and faster iterations.
▶ Integrate with resilience patterns like circuit breaker to

automatically turn on and off.
▶ Control feature rollouts to specific users.

▶ Scripting: complete control of features and flows.
▶ For very complicated applications, e.g. mods for games and

Tcl scripts for EDA tools.
▶ Separate execution flow and features from program binary.
▶ Very flexible – nevertheless, it blurs the boundary between

manageability and maintainability.

16/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Secrets

▶ Secrets: passwords, private keys, API keys, tokens
▶ Must not appear in

▶ Source files and source code repositories
▶ Container images
▶ Logs

▶ Prefer to config secrets via environment variables
▶ Incorrect permissions may make files readable for everyone.
▶ Command-line arguments are visible when inspecting processes

and containers.

17/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Make your application configurable via command-line flags
and environment variable, as well as configuration files.

18/18 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Manageability and Application Configuration
	Manageability in Cloud Systems

