ECE 473/573
Cloud Computing and Cloud Native Systems
Lecture 24 Manageability

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

November 10, 2025

1/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Manageability and Application Configuration

Manageability in Cloud Systems

2/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

» This lecture: 10
» Next Lecture: 11

3/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Manageability and Application Configuration

4/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Manageability

» Change behaviors without having to recode and redeploy.
» By yourself or by someone else.
» Manageability allows to make changes from outside.
» Maintainability allows to make changes from inside, usually by
updating code.
» Manageability for complex systems.
» Make configuration and control options available.
» Use monitoring, logging, and alerting to identify components
that require management, e.g. misconfigured components.
» Manage deployment by updating, rolling back, and scaling
system components.
» Discover available services.

5/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Application Configuration

» Configuration: anything likely to vary between environments
like staging, production, developer, etc.
» Store configuration in the environment.
» Configuration should be strictly separated from the code.
» Configurations should be stored in version control — make it
possible to inspect, review, rollback, and troubleshoot changes.
» Configuration practices

» Command-line flags and environment variables: use start-up
scripts for version control.
» Configuration files: use standard format like JSON and YAML.

6/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with Environment Variables

» Use environment variables
name := os.Getenv("NAME")
place := os.Getenv("CITY")
fmt.Printf("%s lives in %s.\n", name, place)
» Distinguish between an empty value and an unset value.
if val, ok := os.LookupEnv(key); ok {
fmt.Printf ("%s=Ys\n", key, val)
} else {
fmt.Printf ("%s not set\n", key)
}

7/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with Command-Line Arguments

package main

import (
"flag"
llfmt n
)

func main() {
strp := flag.String("string", "foo", "a string")
intp := flag.Int("number", 42, "an integer")
boolp := flag.Bool("boolean", false, "a boolean")
flag.Parse() // Call flag.Parse() to execute command-line parsing.
fmt.Println("string:", *strp)
fmt.Println("integer:", #*intp)
fmt.Println("boolean:", *boolp)
fmt.Println("args:", flag.Args())

» Use the flag package for command-line flags.

» Register with types, default values, and short descriptions
» Map flags to variables.

8/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with Command-Line Arguments (cont.)

$ go run . -help
Usage of /var/folders/go-build618108403/exe/main:
-boolean
a boolean
-number int
an integer (default 42)
-string string
a string (default "foo")
$ go run . -boolean -number 27 -string "A string." Other things.
string: A string.
integer: 27
boolean: true
args: [Other things.]

9/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with JSON Files

type Config struct {
Host string
Port uintl6
Tags map[string]string

func EncodeJson() {
c := Config{
Host: "localhost",
Port: 1313,
Tags: map[stringlstring{"env": "dev"},
}
bytes, err := json.Marshal(c)
fmt.Println(string(bytes))
// {"Host":"localhost","Port":1313,"Tags":{"env":"dev"}}
}

» Use json.Marshal() to encode any struct as JSON string.
» Only public fields (begin with a capital letter) are encoded.

10/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Configuring with JSON Files (cont.)

» Use json.Unmarshal() to decode JSON string into a struct.
c := Config{}
bytes := [Ibyte(‘{"Host":"127.0.0.1","Port":1234,"Tags":{"foo":"bar"}})
err := json.Unmarshal(bytes, &c)
» Missing fields will have a default value of zero or empty.
» Extra fields will be ignored.
» Use interface{} to decode JSON string as it is.

var f interface{}

bytes := [Ibyte(‘{"Foo":"Bar", "Number":1313, "Tags":{"A":"B"}}¢)
err := json.Unmarshal(bytes, &f)

fmt.Println(f)

// map [Number:1313 Foo:Bar Tags:map[A:B]]

» f has a type of map[stringlinterface{}, enabling a
recursive tree-like data structure for arbitrary JSON data.

» Mapping between struct and JSON string can be customized
via struct field tags (like annotations in Java).

> YAML strings are handled similarly.

11/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Manageability in Cloud Systems

12/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Layers of Configurations

» Default values
» User shouldn't need to configure everything.
» Default behavior should be reasonable and unsurprising, e.g.
typical behavior out-of-the-box, safe security setting, limited
CPU and memory usage.
» Allow user to gradually learn the options to config.

» Overrides

» Make the preferences clear when multiple sources of
configurations are available, e.g. command-line arguments
override environment variables, which override default values.

» Make the preferences consistent across development and
production environments.

» Provide useful feedback on where a value comes from,
especially when misconfiguration happens.

13/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Central Configuration Store

» Provide source of truth for configurations across nodes in a
distributed system.
» For example, Kubernetes use etcd
» Distributed key-value store where configuration values can be
obtained.
» Use consensus algorithm to guarantee consistency when
configurations are updated on the fly.
» Not partition tolerant since it depends on a majority quorum.

14/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reloading Configurations

» Should we reload configurations when they change?
» No for simplicity: kill and restart
P> Yes for to minimize downtime

» Applications and services may watch for updates automatically
combining OS filesystem notifications, polling, and hashing.

» Or be notified via the SIGHUP signal as a convention: this
signal was used to notify the terminal of a process is closed —
but for service processes without a terminal, it never happens
so we reuse the signal for configuration updates.

15/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Feature Management

> Allow control of program features and flows.
» Enable experimental features conditionally for testing.
> Adjust features like algorithms according to use cases.
» Reduce need to deploy multiple versions when rollout new
features.
» Feature flags: enable/disable features via configurations
» Manage different code versions in one code base, encouraging
smaller and faster iterations.
» Integrate with resilience patterns like circuit breaker to
automatically turn on and off.
» Control feature rollouts to specific users.

» Scripting: complete control of features and flows.

» For very complicated applications, e.g. mods for games and
Tcl scripts for EDA tools.

» Separate execution flow and features from program binary.

» Very flexible — nevertheless, it blurs the boundary between
manageability and maintainability.

16/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Secrets

> Secrets: passwords, private keys, APl keys, tokens
» Must not appear in
» Source files and source code repositories
» Container images
> Logs
» Prefer to config secrets via environment variables
» Incorrect permissions may make files readable for everyone.
» Command-line arguments are visible when inspecting processes
and containers.

17/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

> Make your application configurable via command-line flags
and environment variable, as well as configuration files.

18/18 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



	Manageability and Application Configuration
	Manageability in Cloud Systems

