ECE 473/573

Cloud Computing and Cloud Native Systems
Lecture 25 Observability

Professor Jia Wang
Department of Electrical and Computer Engineering
lllinois Institute of Technology

November 12, 2025

1/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Observability

Tracing

Metrics

Logging

2/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

» This lecture: 11
> Next two lectures: batch and stream processing
» MapReduce: Simplified Data Processing on Large Clusters
https://research.google/pubs/pub62/
> Resilient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing http://people.csail.
mit.edu/matei/papers/2012/nsdi_spark.pdf

3/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


https://research.google/pubs/pub62/
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

Outline

Observability

4/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Observability

» The need to understand our systems better.
» Complexity of software comes from complex requirements.
» Good software design needs good visibility into systems.
» No amount of fancy frameworks or protocols can solve the
problem of bad software.

» Observability: the ability to infer system'’s internal states from
knowledge of its external outputs. E.g.

» What does that error message mean and what triggers it?

» Why the performance is not as expected?

» While logging may be available for general troubleshooting
purposes, is it possible to answer specfic questions that the
developers haven't thought of yet?

5/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Evolution of Traditional Monitoring

» Traditional monitoring focuses on the “known unknowns”

> |dentify/predict expected or previously observed failure modes.
» Work well for simple systems through trial and error.
» Require code updates that is not flexible.

» However, understanding and monitoring all possible failure (or

non-failure) states in a complex system is impossible.
» Scale of data is beyond human brain power and attention span.
» Non-deterministic behaviors are difficult to reason with.
P Interactions between component faults and system failures are
very complicated.

» Monitoring shows that system is not working and observability
answers why it is not working.

6/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Three

7/22

Pillars of Observability

Tracing: details from one request to its response consisting of
all functions called and messages communicated.

» E.g. arguments and return values and time spent.

Metrics: numerical data points representing system states at
specific points in time.
» E.g. CPU/memory/disk/network usage.

Logging: appending records of noteworthy events to the log
for later review or analysis.

» But how can we manage and search many log files for specific
information?

A synergy of the three leads to better observability.
» When? What? Where? Why?

ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Tracing

8/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Tracing

» Track requests as they propagate through the system.
» Not limited to function calls within a specific process or thread.
» Need to consider queues and communications across process,
network, and even security boundaries.
» Help to pinpoint component failures, identify performance
bottlenecks, and analyze service dependencies.
» Model of requests: spans and traces
» A request may consist of many works and addition requests,
that are running recursively and parallelly.
» Span: a unit of work from beginning to end.
» |dentified by a name with start/end times.
» Model heirarchy of works and requests as nested spans.
» Model causal relationships as ordered spans.

» Trace: collection of spans and their relationships.

9/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Tracing with OpenTelemetry

const serviceName = "foo"

func main() {
setupTracerProvider ()

tr := otel.GetTracerProvider().Tracer(serviceName)

ctx, sp := tr.Start(context.Background(), "main") // Start the root span
defer sp.End() // End completes the span

SomeFunction(ctx)

}

func SomeFunction(ctx context.Context) {
tr := otel.GetTracerProvider () .Tracer (serviceName)
_, sp := tr.Start(ctx, "SomeFunction")
defer sp.End()

. // Do something MAGICAL here!

» Record begin of span at the beginning of a function.
» Usually the function name is used for the span.

> Make use of defer to record end of span.

10/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Tracing with OpenTelemetry (cont.)

func setupTracerProvider() {
stdExporter, err := stdout.NewExporter(
stdout.WithPrettyPrint (),

)
jaegerEndpoint := "http://localhost:14268/api/traces"
serviceName := "fibonacci"
jaegerExporter, err := jaeger.NewRawExporter(
jaeger.WithCollectorEndpoint (jaegerEndpoint),
jaeger.WithProcess(jaeger.Process{
ServiceName: serviceName,
195
)
tp := sdktrace.NewTracerProvider(

sdktrace.WithSyncer (stdExporter),
sdktrace.WithSyncer (jaegerExporter))
otel.SetTracerProvider (tp)
}
> Use a remote exporter to collect spans for a single request

across multiple servers.

» Use multiple exporters so the information can be found in
convenient locations like local logs.

11/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Additional Tracing Features

P Attributes and events can be added to spans.
span.AddEvent ("Canceled by external signal",
label.Int("pid", 1234),
label.String("signal", "SIGHUP"))

> Attributes are key-value pairs.
» Events are points in time.

» Autoinstrumentation is available as wrappers for many

popular libraries.
func main() {

// http.HandleFunc("/", helloGoHandler)

http.Handle("/", otelhttp.NewHandler (

http.HandlerFunc (helloGoHandler), "root"))

log.Fatal (http.ListenAndServe(":3000", nil))

}

12/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Metrics

13/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Metrics

» Collection of numerical data about a component, process, or
activity over time. E.g.
» Computing resources: CPU, memory used, disk/network /O
» Infrastructure: instance replica count, autoscaling events
» Applications: request count, error count
» Business metrics: revenue, customer sign-ups

» Metrics consist of data points as samples.

» Sample should have a name, a value, and a timestamp,
possibly annotated with labels as key-value pairs.

» A set of samples form a time series that can be visualized and
analyzed, e.g. for anomaly detection.

» Push vs. Pull metric collection.

» Applications push metrics to collector: simple but needs
scaling mechanisms like message queues.

» Collector contact applications to pull metrics back: more
flexible and allow ad-hoc inspections, but less friendly for
service discovery, load balancer, and ephemeral services.

14/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Metrics with OpenTelemetry

func main() {

prometheusExporter, err := prometheus.NewExportPipeline(prometheus.Config{})
mp := prometheusExporter.MeterProvider ()

otel.SetMeterProvider (mp)

http.Handle("/metrics", prometheusExporter)

log.Fatal(http.ListenAndServe(":3000", nil))

» Prometheus is an open source monitoring and alerting toolkit

» Use a pull model over HTTP to scrape metric data
» Manage them in its time series database.

15/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Synchronous Instruments

var requests metric.Int64Counter
func buildRequestsCounter() error {

meter := otel.GetMeterProvider () .Meter(serviceName)

requests, err := meter.NewInt64Counter("fibonacci_requests_total",
metric.WithDescription("Total number of Fibonacci requests."),

)

return err

}

var labels = []label.KeyValue{
label.Key("application") .String(serviceName),
label.Key("container_id").String(os.Getenv("HOSTNAME")),
}
func Fibonacci(ctx context.Context, n int) chan int {
requests.Add(ctx, 1, labels...)
// The rest of the function...
}

» Call buildRequestsCounter in main to initialize the counter
requests that is used later.

16/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Synchronous Instruments (cont.)

func updateMetrics(ctx context.Context) {

meter := otel.GetMeterProvider().Meter (serviceName)

mem, _ := meter.NewInt64UpDownCounter ("memory_usage_bytes",
metric.WithDescription("Amount of memory used."),

)

goroutines, _ := meter.NewInt64UpDownCounter ("num_goroutines",
metric.WithDescription("Number of running goroutines."),

)

var m runtime.MemStats

for {
runtime.ReadMemStats (&m)
mMem := mem.Measurement (int64(m.Sys))
mGoroutines := goroutines.Measurement (int64 (runtime.NumGoroutine()))
meter.RecordBatch(ctx, labels, mMem, mGoroutines)
time.Sleep(5 * time.Second)

» Metrics can be measured and recorded in a periodic manner.

» Int64UpDownCounter allows to record metrics that can
increase or decrease.

17/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Logging

18/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Logging

» Why can't we just use fmt.Printf (and so on)?
» Easy to provide lots of context-rich data for a component.

» It is difficult to extract information from verbose and
unstructured logs.

» |In particular at scale, when you are interested in logs from
many, but not one, components.

» To generate and store logs consumes CPU and I/O resources.

» Without careful planning, could easily consume significant
amount of resources.

» How to store logs for access at scale?

» Many services we have discussed and will discuss are created
for processing logs!

19/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Structured Logging

P> Treat logs as streams of events.

» Instead of lines in files that should be read by humans.

» Applications generate events for logs.

» Underlying infrastructure takes care of routing, storage,
indexing, and analysis.

» Developers could still read logs as lines in files for development
but will access them differently, e.g. through database queries,
in production.

» Structured logging: describe events as key-value pairs.

» There is no need to generate human friendly lines that need to

be parsed later.
» Instead of,

2020/11/09 02:15:10AM User 12345: GET /help in 23ms
2020/11/09 02:15:11AM Database error: connection reset by peer

Store logs in JSON,

{"time":1604888110, "level":"info", "method":"GET", "path":"/help",
{"time":1604888111, "level":"error", "error":'"connection reset by pee

20/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Logging with Zap

logger, err := zap.NewProduction()
if err != nil {

log.Fatalf("can’t initialize zap logger: %v", err)
}

logger.Info("failed to fetch URL",
zap.String("url", url),
zap.Int("attempt", 3),
zap.Duration("backoff", time.Second),

)

» Zap is a popular open source logging library.
» Known for its speed and low memory usage.

> In particular with strong typing, through a bit awkward to use.
» The Sugar method provides a easier but slower interface.
logger, _ := zap.NewProduction()
sugar := logger.Sugar ()
sugar.Infof ("failed to fetch URL: %s", url)

21/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

> Make your application observable by integrating
OpenTelemetry solutions.

22/22 ECE 473/573 — Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



	Observability
	Tracing
	Metrics
	Logging

