
ECE 473/573
Cloud Computing and Cloud Native Systems

Lecture 25 Observability

Professor Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology

November 12, 2025

1/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Observability

Tracing

Metrics

Logging

2/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Reading Assignment

▶ This lecture: 11
▶ Next two lectures: batch and stream processing

▶ MapReduce: Simplified Data Processing on Large Clusters
https://research.google/pubs/pub62/

▶ Resilient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing http://people.csail.

mit.edu/matei/papers/2012/nsdi_spark.pdf

3/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT

https://research.google/pubs/pub62/
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf


Outline

Observability

Tracing

Metrics

Logging

4/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Observability

▶ The need to understand our systems better.
▶ Complexity of software comes from complex requirements.
▶ Good software design needs good visibility into systems.
▶ No amount of fancy frameworks or protocols can solve the

problem of bad software.

▶ Observability: the ability to infer system’s internal states from
knowledge of its external outputs. E.g.
▶ What does that error message mean and what triggers it?
▶ Why the performance is not as expected?
▶ While logging may be available for general troubleshooting

purposes, is it possible to answer specfic questions that the
developers haven’t thought of yet?

5/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Evolution of Traditional Monitoring

▶ Traditional monitoring focuses on the “known unknowns”
▶ Identify/predict expected or previously observed failure modes.
▶ Work well for simple systems through trial and error.
▶ Require code updates that is not flexible.

▶ However, understanding and monitoring all possible failure (or
non-failure) states in a complex system is impossible.
▶ Scale of data is beyond human brain power and attention span.
▶ Non-deterministic behaviors are difficult to reason with.
▶ Interactions between component faults and system failures are

very complicated.

▶ Monitoring shows that system is not working and observability
answers why it is not working.

6/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Three Pillars of Observability

▶ Tracing: details from one request to its response consisting of
all functions called and messages communicated.
▶ E.g. arguments and return values and time spent.

▶ Metrics: numerical data points representing system states at
specific points in time.
▶ E.g. CPU/memory/disk/network usage.

▶ Logging: appending records of noteworthy events to the log
for later review or analysis.
▶ But how can we manage and search many log files for specific

information?

▶ A synergy of the three leads to better observability.
▶ When? What? Where? Why?

7/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Observability

Tracing

Metrics

Logging

8/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Tracing

▶ Track requests as they propagate through the system.
▶ Not limited to function calls within a specific process or thread.
▶ Need to consider queues and communications across process,

network, and even security boundaries.
▶ Help to pinpoint component failures, identify performance

bottlenecks, and analyze service dependencies.

▶ Model of requests: spans and traces
▶ A request may consist of many works and addition requests,

that are running recursively and parallelly.

▶ Span: a unit of work from beginning to end.
▶ Identified by a name with start/end times.
▶ Model heirarchy of works and requests as nested spans.
▶ Model causal relationships as ordered spans.

▶ Trace: collection of spans and their relationships.

9/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Tracing with OpenTelemetry

const serviceName = "foo"

func main() {

setupTracerProvider()

tr := otel.GetTracerProvider().Tracer(serviceName)

ctx, sp := tr.Start(context.Background(), "main") // Start the root span

defer sp.End() // End completes the span

SomeFunction(ctx)

}

func SomeFunction(ctx context.Context) {

tr := otel.GetTracerProvider().Tracer(serviceName)

_, sp := tr.Start(ctx, "SomeFunction")

defer sp.End()

... // Do something MAGICAL here!

}

▶ Record begin of span at the beginning of a function.
▶ Usually the function name is used for the span.

▶ Make use of defer to record end of span.

10/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Tracing with OpenTelemetry (cont.)

func setupTracerProvider() {

stdExporter, err := stdout.NewExporter(

stdout.WithPrettyPrint(),

)

jaegerEndpoint := "http://localhost:14268/api/traces"

serviceName := "fibonacci"

jaegerExporter, err := jaeger.NewRawExporter(

jaeger.WithCollectorEndpoint(jaegerEndpoint),

jaeger.WithProcess(jaeger.Process{

ServiceName: serviceName,

}),

)

tp := sdktrace.NewTracerProvider(

sdktrace.WithSyncer(stdExporter),

sdktrace.WithSyncer(jaegerExporter))

otel.SetTracerProvider(tp)

}

▶ Use a remote exporter to collect spans for a single request
across multiple servers.

▶ Use multiple exporters so the information can be found in
convenient locations like local logs.

11/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Additional Tracing Features

▶ Attributes and events can be added to spans.
span.AddEvent("Canceled by external signal",

label.Int("pid", 1234),

label.String("signal", "SIGHUP"))

▶ Attributes are key-value pairs.
▶ Events are points in time.

▶ Autoinstrumentation is available as wrappers for many
popular libraries.
func main() {

// http.HandleFunc("/", helloGoHandler)

http.Handle("/", otelhttp.NewHandler(

http.HandlerFunc(helloGoHandler), "root"))

log.Fatal(http.ListenAndServe(":3000", nil))

}

12/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Observability

Tracing

Metrics

Logging

13/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Metrics

▶ Collection of numerical data about a component, process, or
activity over time. E.g.
▶ Computing resources: CPU, memory used, disk/network I/O
▶ Infrastructure: instance replica count, autoscaling events
▶ Applications: request count, error count
▶ Business metrics: revenue, customer sign-ups

▶ Metrics consist of data points as samples.
▶ Sample should have a name, a value, and a timestamp,

possibly annotated with labels as key-value pairs.
▶ A set of samples form a time series that can be visualized and

analyzed, e.g. for anomaly detection.

▶ Push vs. Pull metric collection.
▶ Applications push metrics to collector: simple but needs

scaling mechanisms like message queues.
▶ Collector contact applications to pull metrics back: more

flexible and allow ad-hoc inspections, but less friendly for
service discovery, load balancer, and ephemeral services.

14/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Metrics with OpenTelemetry

func main() {

...

prometheusExporter, err := prometheus.NewExportPipeline(prometheus.Config{})

mp := prometheusExporter.MeterProvider()

otel.SetMeterProvider(mp)

http.Handle("/metrics", prometheusExporter)

log.Fatal(http.ListenAndServe(":3000", nil))

}

▶ Prometheus is an open source monitoring and alerting toolkit
▶ Use a pull model over HTTP to scrape metric data
▶ Manage them in its time series database.

15/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Synchronous Instruments

var requests metric.Int64Counter

func buildRequestsCounter() error {

meter := otel.GetMeterProvider().Meter(serviceName)

requests, err := meter.NewInt64Counter("fibonacci_requests_total",

metric.WithDescription("Total number of Fibonacci requests."),

)

return err

}

var labels = []label.KeyValue{

label.Key("application").String(serviceName),

label.Key("container_id").String(os.Getenv("HOSTNAME")),

}

func Fibonacci(ctx context.Context, n int) chan int {

requests.Add(ctx, 1, labels...)

// The rest of the function...

}

▶ Call buildRequestsCounter in main to initialize the counter
requests that is used later.

16/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Synchronous Instruments (cont.)

func updateMetrics(ctx context.Context) {

meter := otel.GetMeterProvider().Meter(serviceName)

mem, _ := meter.NewInt64UpDownCounter("memory_usage_bytes",

metric.WithDescription("Amount of memory used."),

)

goroutines, _ := meter.NewInt64UpDownCounter("num_goroutines",

metric.WithDescription("Number of running goroutines."),

)

var m runtime.MemStats

for {

runtime.ReadMemStats(&m)

mMem := mem.Measurement(int64(m.Sys))

mGoroutines := goroutines.Measurement(int64(runtime.NumGoroutine()))

meter.RecordBatch(ctx, labels, mMem, mGoroutines)

time.Sleep(5 * time.Second)

}

}

▶ Metrics can be measured and recorded in a periodic manner.

▶ Int64UpDownCounter allows to record metrics that can
increase or decrease.

17/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Outline

Observability

Tracing

Metrics

Logging

18/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Logging

▶ Why can’t we just use fmt.Printf (and so on)?
▶ Easy to provide lots of context-rich data for a component.

▶ It is difficult to extract information from verbose and
unstructured logs.
▶ In particular at scale, when you are interested in logs from

many, but not one, components.

▶ To generate and store logs consumes CPU and I/O resources.
▶ Without careful planning, could easily consume significant

amount of resources.

▶ How to store logs for access at scale?
▶ Many services we have discussed and will discuss are created

for processing logs!

19/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Structured Logging

▶ Treat logs as streams of events.
▶ Instead of lines in files that should be read by humans.
▶ Applications generate events for logs.
▶ Underlying infrastructure takes care of routing, storage,

indexing, and analysis.
▶ Developers could still read logs as lines in files for development

but will access them differently, e.g. through database queries,
in production.

▶ Structured logging: describe events as key-value pairs.
▶ There is no need to generate human friendly lines that need to

be parsed later.
▶ Instead of,

2020/11/09 02:15:10AM User 12345: GET /help in 23ms

2020/11/09 02:15:11AM Database error: connection reset by peer

Store logs in JSON,
{"time":1604888110, "level":"info", "method":"GET", "path":"/help", "duration":23, "message":"Access"}

{"time":1604888111, "level":"error", "error":"connection reset by peer", "database":"user", "message":"Database error"}

20/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Logging with Zap

logger, err := zap.NewProduction()

if err != nil {

log.Fatalf("can’t initialize zap logger: %v", err)

}

logger.Info("failed to fetch URL",

zap.String("url", url),

zap.Int("attempt", 3),

zap.Duration("backoff", time.Second),

)

▶ Zap is a popular open source logging library.
▶ Known for its speed and low memory usage.
▶ In particular with strong typing, through a bit awkward to use.
▶ The Sugar method provides a easier but slower interface.

logger, _ := zap.NewProduction()

sugar := logger.Sugar()

sugar.Infof("failed to fetch URL: %s", url)

21/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT



Summary

▶ Make your application observable by integrating
OpenTelemetry solutions.

22/22 ECE 473/573 – Cloud Computing and Cloud Native Systems, Dept. of ECE, IIT


	Observability
	Tracing
	Metrics
	Logging

