1/23

ECE 587 — Hardware/Software Co-Design
Lecture 02 Abstraction Levels and Models

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

January 14, 2026

ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Reading Assignment

» This lecture: 1, 2

» Next week (Wed. 1/21, Fri. 1/23): Neural Networks and
GEMM

2/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



System Design Challenges

Models

An Example Design

3/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



The Productivity Gap

> System complexity increases almost exponentially
» Software: more lines of code
» Hardware: more transistors to use
» Designer's ability increases slowly
» How many components can you manage in your mind?
» There is a huge gap between what is available for us to design
and what we can manage to design
» Increasing team size is not always successful according to
software engineering practices, especially when robustness and
reliability are of concern.
» Commonly accepted solution: raise the level of abstraction in
the design process, e.g. hierarchical designs.

» Can we close the gap with large language models?

4/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Abstraction Levels

> Abstraction helps to hide details, e.g.
» Logic gates vs. transistors for hardware design
» Reasonings are easier and more relevant at the higher
abstraction level (logic gates) using boolean logic than at the
lower one (transistors) using voltages and currents.
» There are less components at the higher abstraction level.
P> To close the productivity gap, it is desired to design the
system at higher abstraction levels and not to provide any
lower level detail at all.
» Designers provide specifications (descriptions at higher
abstraction levels).
» Design time is reduced by applying design automation that
synthesizes implementations (details at lower abstraction

levels).
» Avoid error prone manual design to improve robustness and

reliability

5/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



More about Abstraction Levels

» How to define an abstraction level?

» Designers should have consensus on the definition to facilitate
communications, e.g. what are logic gates.

» The definition should involve some kind of mathematics to
make automatic synthesis possible, e.g. boolean logic.

> At what abstraction level should designers work?

» Designers should be able to reason about the system very
effectively at such level, as this will help to

» Reduce design time by ignoring unnecessary details, e.g. a
logic gate can be used directly without any understanding on
its implementation.

» Improve design quality by eliminating chances to make

mistakes, e.g. you will never implement the logic gate the
wrong way.

6/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



System Design Challenges

Models

An Example Design

7/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Models

» To specify a system at certain abstraction levels, sufficient
details are needed to predict system behavior with absolute
precision.

» An intuitive way to specify a system is to specify its
subsystems and their interactions.

» E.g. hierarchical design

> Model: defining an abstraction level by defining a method for
decomposition

» Types of the subsystems
» Rules for composing them into the system

8/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Considerations for Models

» No ambiguity and complete
» Help to distinguish abstraction levels with subtle differences
> Make reasonings about the system easier

» Models come from experiences of expert designers.
» Modifying a subsystem will also become easier.

» Make communications easier
» System design is a team work.

9/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Examples

10/23

Logic gates can actually be represented at three abstraction
levels.
Register-transfer level (RTL)

» Boolean expressions consisting of literals and logic operators
Netlist

> Logic gates and interconnects
Standard-cell based designs

» Placement of standard cells and routings of wires
The above three models are also examples of a typical
classification of models.

ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Typical Classification of Models

» Behavioral model
> A blackbox with description of functionality, i.e. input/output
relationship
» Implementation, i.e. how to obtain output from input, is not
specified
» Structural model
» An implementation of interconnected components
» Functionality is not specified explicitly
» Physical model
» Specify the physical characteristics of components and
Interconnects
» Dimensionality and placement
» From the perspective of models, modern ASIC design can be
summarized as: RTL (behavioral) — Netlist (structural) —
standard cells (physical)

11/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Other

12/23

Examples of Models

Finite state machine

» Pretty much the synonym of RTL for hardware designs
Sequential program

» Supported by most programming languages
Dataflow

» Enable parallelism, e.g. MapReduce
It is usually necessary to extend and to compose existing
models to specify a complex system.
It is usually more rewarding to reason complex functionalities
with models instead of separated software and hardware
implementaions.

ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



From Models to System Specifications

» Models are somewhat conceptual
» In designers’ mind
» On pieces of scratching paper
> Models need to be captured for further processings

» Especially for design automation tools, e.g. for synthesis and
verification

» Specification languages
> A formal way to capture models

» A model can be captured in many different languages
» A language can capture many different models

13/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Natural Languages v.s. Formal Languages

» Natural languages

» Ambiguous: even native speakers may have different
explanations
» Incomplete: cumbersome to elaborate all possible behaviors

» Formal languages

» Based on math: everyone should understand
» No ambiguity and complete

» Training is required to use both kind of languages effectively.

14/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



System Design Challenges
Models

An Example Design

15/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



A System for Summation

Let's design a system to perform summation.
» What appears in your mind? An adder?

16/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Functional Specification

17/23

Mathematical model:
Input: n numbers a;g, ap, ..., an
Output: Y1 ; aj
More details are necessary to incorporate such model into a
system
» What is n?
» What is the type of the numbers?
» What if overflow/underflow happens?
Assumptions
P> 16 32-bit integers
» Ignore overflow /underflow
Now the model can be used for simulation without knowing
anything about implementation.

ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Design Constraints: Performance Objectives

P> Latency: complete a summation in 8ns

» Throughput: complete 1,000,000, 000 summations per second

18/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Rough HW/SW Partitioning

> Hardware
P> Need at least one two-input adder
> Software

» Coordinate hardware to complete summation by adding two
numbers a time
» If a higher precision is required later, software can be updated

19/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Design Space Exploration |

» Assume adders that can add two 32-bit integers in 1ns are
available

» Sequential program

» Accumulator: 1 adder and 1 32-bit register
» Smallest size

> What is the latency and the throughput?

20/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Design Space Exploration Il

» Dataflow: a model to capture complex computations.

» 15 adders connected in series
» 15 adders connected into a tree

» What are their latency and throughput?
» Can you easily change your design to meet those constraints?

21/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Design Space Exploration Il

» What if other adders are available?
> Note that until now, we haven't talked about any specific
adder design, e.g. carry-ripple and carry-lookahead.
» We could also use carry-save adders.
» Which design will have the minimum cost while still satisfying
the performance constraints?
> What if weighted summations are required?
» Inner product of a weight vector and an input vector.

» What about inner products of each pair among multiple
weight and input vectors?

» GEMM: General Matrix Multiplication

» Does adding better and more adders always help to improve
performance?

22/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



Summary

» Models define abstraction levels.

» Choose proper models increases designer's productivity.

23/23 ECE 587 — Hardware/Software Co-Design, Dept. of ECE, IIT



	System Design Challenges
	Models
	An Example Design

